welcome: please sign in
location: Änderungen von "RstatisTik/RstatisTikPortal/RcourSe/CourseOutline/GridGraphics"
Unterschiede zwischen den Revisionen 2 und 4 (über 2 Versionen hinweg)
Revision 2 vom 2015-05-01 10:58:18
Größe: 11428
Kommentar:
Revision 4 vom 2015-05-01 11:05:40
Größe: 12215
Kommentar:
Gelöschter Text ist auf diese Art markiert. Hinzugefügter Text ist auf diese Art markiert.
Zeile 4: Zeile 4:
Zeile 6: Zeile 7:
Zeile 9: Zeile 11:
}}}
== Structure of a ggplot Object ==
data: [x]
faceting: facet_null()
}}}
 * what we see are empty place holders
 * when we use str() to explore the structure of the object we see that it is a list with length 9
Zeile 14: Zeile 20:
  List of 9
  $ data : list()
  ..- attr(*, "class")= chr "waiver"
  $ layers : list()
  $ scales :Reference class 'Scales' [package "ggplot2"] with 1 fields
  ..$ scales: NULL
  ..and 21 methods, of which 9 are possibly relevant:
  .. add, clone, find, get_scales, has_scale, initialize, input, n,
  .. non_position_scales
  $ mapping : list()
  $ theme : list()
  $ coordinates:List of 1
  ..$ limits:List of 2
  .. ..$ x: NULL
  .. ..$ y: NULL
  ..- attr(*, "class")= chr [1:2] "cartesian" "coord"
  $ facet :List of 1
  ..$ shrink: logi TRUE
  ..- attr(*, "class")= chr [1:2] "null" "facet"
  $ plot_env :<environment: R_GlobalEnv>
  $ labels : list()
  - attr(*, "class")= chr [1:2] "gg" "ggplot"
Zeile 17: Zeile 45:
   * the first argument to ggplot is data
   * then specify what graphics shapes you are going to use to view the data (e.g. geom\_line() or geom\_point()).
   * specify what features (or aesthetics) will be used (e.g. what variables will determine x- and y-locations) with the aes() function
   * if these aesthetics are intented to be used in all layers it is more convenient to specify them in the ggplot object

* the first argument to ggplot is data
 * then specify what graphics shapes you are going to use to view the data (e.g. geom_line() or geom_point()).
 * specify what features (or aesthetics) will be used (e.g. what variables will determine x- and y-locations) with the aes() function
 * if these aesthetics are intented to be used in all layers it is more convenient to specify them in the ggplot object
Zeile 22: Zeile 52:
   * first we create a little sample data frame\small  * first we create a little sample data frame\small
Zeile 41: Zeile 72:
== Feed the Object ==
  
* then create a ggplot object containing the data and some standard aesthetics (here we define the x and the y positions)
   * add one or more geoms, we begin with geom\_point
 * then we create a ggplot object containing the data and some standard aesthetics (here we define the x and the y positions)
 * add one or more geoms, we begin with geom_point
Zeile 49: Zeile 80:
<img alt='sesssion2/ggp1.pdf' src='-1' />
== Layers ==
   * ggplot() creates an object - every "+" adds something to this object (change the object)
   * the default method of ggplot() is print(), which creates the plot
   * it is better to store the object - so you can change it (e.g. you can change the data frame)
== Layers ==
   * so we add another layer, which adds a label to the points (use geom\_text)
{{{#!highlight r
}}}
   * aes(label=l) maps the l variable to the label aesthetic, and hjust and vjust define where our labels are placed
== Layers ==
 * ggplot() creates an object - every "+" adds something to this object (change the object)
 * the default method of ggplot() is print(), which creates the plot
 * it is better to store the object - so you can change it (e.g. you can change the data frame)

== Layers ==
 * so we add another layer, which adds a label to the points (use geom\_text)

{{{#!highlight r
}}}
 * aes(label=l) maps the l variable to the label aesthetic, and hjust and vjust define where our labels are placed
Zeile 60: Zeile 93:
== Layers ==
   * imagine you have worked a little time on a plot - and then you detect a mistake in your data, so the ''real'' data frame looks different
   * so you can replace the old, wrong data by the new data (using \%+\% \footnotesize

== Layers ==
 * imagine you have worked a little time on a plot - and then you detect a mistake in your data, so the ''real'' data frame looks different
 * so you can replace the old, wrong data by the new data (using \%+\% \footnotesize
Zeile 82: Zeile 117:
Zeile 87: Zeile 123:
== Layers ==
   * by using the line geom you can join the points (we use the new data)

== Layers ==
 * by using the line geom you can join the points (we use the new data)
Zeile 94: Zeile 132:
== Layers ==
   * you can also join the points in the order of the data fram by using the path geom instead\footnotesize
{{{#!highlight r
> my.text <- geom_text(aes(label=l), 
+ hjust=1.1, 

== Layers ==
 * you can also join the points in the order of the data fram by using the path geom instead\footnotesize

{{{#!highlight r
> my.text <- geom_text(aes(label=l),
+ hjust=1.1,
Zeile 103: Zeile 143:
Zeile 105: Zeile 146:
   * there are three geoms: abline, vline, hline
   * abline adds one or more lines with specified slope and intercept to the plot\footnotesize

* there are three geoms: abline, vline, hline
 * abline adds one or more lines with specified slope and intercept to the plot\footnotesize
Zeile 118: Zeile 161:
== Layers ==
   * adding lines referring to the data frame

== Layers ==
 * adding lines referring to the data frame
Zeile 122: Zeile 167:
+ geom_abline(aes(slope=b,intercept=a,colour=x1)) + 
+ scale_x_continuous(limits=c(0,10)) 
+ geom_abline(aes(slope=b,intercept=a,colour=x1)) +
+ scale_x_continuous(limits=c(0,10))
Zeile 126: Zeile 171:
== Layers ==
   * the same works for the hline and the vline geom which add horizonal and vertical line(s)
   * argument: yintercept, xintercept respectively
   * setting and mapping are possible

== Layers ==
 * the same works for the hline and the vline geom which add horizonal and vertical line(s)
 * argument: yintercept, xintercept respectively
 * setting and mapping are possible
Zeile 132: Zeile 179:
> p1 + geom_hline(yintercept=1:10) +  > p1 + geom_hline(yintercept=1:10) +
Zeile 136: Zeile 183:
Zeile 137: Zeile 185:
   * some other layers for 1 continuous variable:
     * geom\_boxplot()
      * geom\_histogram()
    
* geom\_density()
   * some other layers for 1 discrete variable:
      * geom\_bar()
  
* some other layers for 2 or more continuous variables:
      * geom\_smooth()
    
* geom\_density2d()
      * geom\_contour()
    
* geom\_quantile()
== Exercises ==
   * use our data frame or load it: \texttt{load("20150310data.rdata")}
   * create a new variable EC1 containing the first 2 letters of the Event.Code column, use the function str\_sub() from the stringr package (type \texttt{?str\_sub} to get help)
 * some other layers for 1 continuous variable:
  * geom\_boxplot()
  * geom\_histogram()
* geom\_density()
 * some other layers for 1 discrete variable:
  * geom\_bar()
* some other layers for 2 or more continuous variables:
  * geom\_smooth()
* geom\_density2d()
  * geom\_contour()
* geom\_quantile()

== Exercises ==
 * use our data frame or load it: \texttt{load("20150310data.rdata")}
 * create a new variable EC1 containing the first 2 letters of the Event.Code column, use the function str\_sub() from the stringr package (type \texttt{?str\_sub} to get help)
Zeile 178: Zeile 228:
Create the five plots and save them into a file.
* create a plot using ggplot, map the variable EC1 to x and use geom\_bar()
* now to the plot again, but add another aesthetic: fill (colour of the filling); map fill to Stim.Type
* add the position argument to geom\_bar(), set it to "fill"
* now add \texttt{facet\_wrap(~testid)} to show the same graph per time
* make a graph facetted per child showing stacked hit/incorrect bars with time on the x axis
== Exercises ==
   * create a plot using ggplot, map the variable EC1 to x and use geom\_bar()
Create the five plots and save them into a file. * create a plot using ggplot, map the variable EC1 to x and use geom\_bar() * now to the plot again, but add another aesthetic: fill (colour of the filling); map fill to Stim.Type * add the position argument to geom\_bar(), set it to "fill" * now add \texttt{facet\_wrap(~testid)} to show the same graph per time * make a graph facetted per child showing stacked hit/incorrect bars with time on the x axis

== Exercises ==
 * create a plot using ggplot, map the variable EC1 to x and use geom\_bar()
Zeile 189: Zeile 236:
>  >
Zeile 191: Zeile 238:
Saving 16 x 9.13 in image   Saving 16 x 9.13 in image
Zeile 194: Zeile 241:
== Exercises ==
   * now to the plot again, but add another aesthetic: fill (colour of the filling); map fill to Stim.Type

== Exercises ==
 * now to the plot again, but add another aesthetic: fill (colour of the filling); map fill to Stim.Type
Zeile 199: Zeile 248:
>  >
Zeile 204: Zeile 253:
== Exercises ==
   * add the position argument to geom\_bar(), set it to "fill"

== Exercises ==
 * add the position argument to geom\_bar(), set it to "fill"
Zeile 209: Zeile 260:
>  >
Zeile 214: Zeile 265:
== Exercises ==
   * now add \texttt{facet\_wrap(~testid)} to show the same graph per time

== Exercises ==
 * now add \texttt{facet\_wrap(~testid)} to show the same graph per time
Zeile 220: Zeile 273:
>  >
Zeile 225: Zeile 278:
== Exercises ==
   * now add \texttt{facet\_wrap(~testid)} to show the same graph per time

== Exercises ==
 * now add \texttt{facet\_wrap(~testid)} to show the same graph per time
Zeile 231: Zeile 286:
>  >
Zeile 236: Zeile 291:
== Exercises ==
   * make a graph facetted per child showing stacked hit/incorrect bars with time on the x axis

== Exercises ==
 * make a graph facetted per child showing stacked hit/incorrect bars with time on the x axis
Zeile 246: Zeile 303:
Zeile 248: Zeile 306:
   *  Elucidating the most common data manipulation operations, so that your options are helpfully constrained when thinking about how to tackle a problem.
   *  Providing simple functions that correspond to the most common data manipulation verbs, so that you can easily translate your thoughts into code.
   * Using efficient data storage backends, so that you spend as little time waiting for the computer as possible.

* Elucidating the most common data manipulation operations, so that your options are helpfully constrained when thinking about how to tackle a problem.
 * Providing simple functions that correspond to the most common data manipulation verbs, so that you can easily translate your thoughts into code.
 * Using efficient data storage backends, so that you spend as little time waiting for the computer as possible.
Zeile 253: Zeile 313:
   * this leads to another important type of component not yet mentioned
   * if you map a variable to a aesthetic is these done in a default way, in this case some reddish colour is mapped to hit while light blue is mapped to incorrect; in addition a discrete range of colours is automatically used
   * these rules of mapping are called scales
   * different type of scales exists for the axes, colours, shapes etc, some of them exists in discrete and continuous versions, some in just one of them (in general one can say, everytime there can be a legend there is a scale)
   * the name convention: scale\_aesthetic\_specification. for example scale\_x\_discrete for customizing a discrete x axis (e.g. in barplots)

* this leads to another important type of component not yet mentioned
 * if you map a variable to a aesthetic is these done in a default way, in this case some reddish colour is mapped to hit while light blue is mapped to incorrect; in addition a discrete range of colours is automatically used
 * these rules of mapping are called scales
 * different type of scales exists for the axes, colours, shapes etc, some of them exists in discrete and continuous versions, some in just one of them (in general one can say, everytime there can be a legend there is a scale)
 * the name convention: scale\_aesthetic\_specification. for example scale\_x\_discrete for customizing a discrete x axis (e.g. in barplots)
Zeile 259: Zeile 321:
   * to change our discrete colour scale for the filling we type \footnotesize  * to change our discrete colour scale for the filling we type \footnotesize
Zeile 267: Zeile 330:
Zeile 269: Zeile 333:
   * scale\_colour\_grey()
   * scale\_colour\_hue()
   * scale\_colour\_brewer()

* scale\_colour\_grey()
 * scale\_colour\_hue()
 * scale\_colour\_brewer()

The ggplot2 Package

  • ggplot2 is - like lattice based on the grid graphics system (Paul Murrell)
  • graphics and parts of graphics are objects and they are manipulable

Structure of a ggplot Object

begin with an empty object to see the structure:

   1 > po <- ggplot()
   2 > summary(po)
   3 data: [x]
   4 faceting: facet_null()
  • what we see are empty place holders
  • when we use str() to explore the structure of the object we see that it is a list with length 9

   1 > str(po)
   2 List of 9
   3   List of 9
   4   $ data       : list()
   5   ..- attr(*, "class")= chr "waiver"
   6   $ layers     : list()
   7   $ scales     :Reference class 'Scales' [package "ggplot2"] with 1 fields
   8   ..$ scales: NULL
   9   ..and 21 methods, of which 9 are possibly relevant:
  10   ..  add, clone, find, get_scales, has_scale, initialize, input, n,
  11   ..  non_position_scales
  12   $ mapping    : list()
  13   $ theme      : list()
  14   $ coordinates:List of 1
  15   ..$ limits:List of 2
  16   .. ..$ x: NULL
  17   .. ..$ y: NULL
  18   ..- attr(*, "class")= chr [1:2] "cartesian" "coord"
  19   $ facet      :List of 1
  20   ..$ shrink: logi TRUE
  21   ..- attr(*, "class")= chr [1:2] "null" "facet"
  22   $ plot_env   :<environment: R_GlobalEnv>
  23   $ labels     : list()
  24   - attr(*, "class")= chr [1:2] "gg" "ggplot"

Structure of a ggplot Object

Now we fill this structure - first the three main steps:

  • the first argument to ggplot is data
  • then specify what graphics shapes you are going to use to view the data (e.g. geom_line() or geom_point()).
  • specify what features (or aesthetics) will be used (e.g. what variables will determine x- and y-locations) with the aes() function
  • if these aesthetics are intented to be used in all layers it is more convenient to specify them in the ggplot object

Feed the Object

  • first we create a little sample data frame\small

   1 > x1 <- 1:10; y1 <- 1:10; z1 <- 10:1
   2 > l1 <- LETTERS[1:10]
   3 > a <- 10; b <- (0:-9)/10:1
   4 > ex <- data.frame(x=x1,y=y1,z=z1,l=l1,a=a,b=b)
   5 > ex
   6 x  y  z l  a          b
   7 1   1  1 10 A 10  0.0000000
   8 2   2  2  9 B 10 -0.1111111
   9 3   3  3  8 C 10 -0.2500000
  10 4   4  4  7 D 10 -0.4285714
  11 5   5  5  6 E 10 -0.6666667
  12 6   6  6  5 F 10 -1.0000000
  13 7   7  7  4 G 10 -1.5000000
  14 8   8  8  3 H 10 -2.3333333
  15 9   9  9  2 I 10 -4.0000000
  16 10 10 10  1 J 10 -9.0000000
  • then we create a ggplot object containing the data and some standard aesthetics (here we define the x and the y positions)
  • add one or more geoms, we begin with geom_point

   1 > po <- ggplot(ex,aes(x=x1,y=y1))
   2 > summary(po)
   3 > p1 <- po + geom_point()

Layers

  • ggplot() creates an object - every "+" adds something to this object (change the object)
  • the default method of ggplot() is print(), which creates the plot
  • it is better to store the object - so you can change it (e.g. you can change the data frame)

Layers

  • so we add another layer, which adds a label to the points (use geom\_text)

   1 
  • aes(label=l) maps the l variable to the label aesthetic, and hjust and vjust define where our labels are placed

<img alt='sesssion2/ggp2.pdf' src='-1' />

Layers

  • imagine you have worked a little time on a plot - and then you detect a mistake in your data, so the real data frame looks different

  • so you can replace the old, wrong data by the new data (using \%+\% \footnotesize

   1 > ## the new data
   2 > ex2 <- data.frame(x1=sample(1:20),
   3 +                   y1=sample(1:10),
   4 +                   l=letters[1:20])
   5 > head(ex2,10)
   6 x1 y1 l
   7 1   3  6 a
   8 2   6  2 b
   9 3  14  1 c
  10 4  19 10 d
  11 5  12  4 e
  12 6  15  8 f
  13 7  20  5 g
  14 8  17  7 h
  15 9  13  3 i
  16 10 16  9 j

<img alt='sesssion2/ggp3.pdf' src='-1' />

Layers

   1 > p2 %+% ex2

<img alt='sesssion2/ggp3.pdf' src='-1' />

Layers

  • by using the line geom you can join the points (we use the new data)

   1 > pn <- p %+% ex2 ## replace data in p
   2 > pn + geom_line()

<img alt='sesssion2/ggp4.pdf' src='-1' />

Layers

  • you can also join the points in the order of the data fram by using the path geom instead\footnotesize

   1 > my.text <- geom_text(aes(label=l),
   2 +                          hjust=1.1,
   3 +                          vjust=-0.2)
   4 > pn + geom_path() + my.text

<img alt='sesssion2/ggp5.pdf' src='-1' />

Layers

Adding extra lines:

  • there are three geoms: abline, vline, hline
  • abline adds one or more lines with specified slope and intercept to the plot\footnotesize

   1 > ## one line
   2 > p + geom_abline(intercept=10,slope=-1,
   3 +                          colour=rgb(.5,.5,.9))
   4 > ## two lines
   5 > p + geom_abline(intercept=c(10,9),slope=c(-1,-2),
   6 +                              colour=rgb(.5,.5,.9))
   7 > more lines
   8 > p + geom_abline(intercept=10:1,slope=-(10:1)/10,

<img alt='sesssion2/ggp6.png' src='-1' />

Layers

  • adding lines referring to the data frame

   1 > p1 +
   2 +   geom_abline(aes(slope=b,intercept=a,colour=x1)) +
   3 +   scale_x_continuous(limits=c(0,10))

<img alt='sesssion2/ggp7.pdf' src='-1' />

Layers

  • the same works for the hline and the vline geom which add horizonal and vertical line(s)
  • argument: yintercept, xintercept respectively
  • setting and mapping are possible

   1 > p1 + geom_hline(yintercept=1:10)
   2 > p1 + geom_hline(yintercept=1:10) +
   3 +     geom_vline(xintercept=1:10)

<img alt='sesssion2/ggp8.pdf' src='-1' />

Other Common Layers

  • some other layers for 1 continuous variable:
    • geom\_boxplot()
    • geom\_histogram()
    • geom\_density()
  • some other layers for 1 discrete variable:
    • geom\_bar()
  • some other layers for 2 or more continuous variables:
    • geom\_smooth()
    • geom\_density2d()
    • geom\_contour()
    • geom\_quantile()

Exercises

  • use our data frame or load it: \texttt{load("20150310data.rdata")}
  • create a new variable EC1 containing the first 2 letters of the Event.Code column, use the function str\_sub() from the stringr package (type \texttt{?str\_sub} to get help)

Exercises

   1 > data$EC1 <- factor(str_sub(data$Event.Code,1,2))
   2 > head(data)
   3 Subject Sex Age_PRETEST Trial Event.Type Code   Time TTime Uncertainty
   4 1       1   f        3.11     7   Response    2 103745  2575           1
   5 2       1   f        3.11    12   Response    2 156493  2737           1
   6 3       1   f        3.11    17   Response    2 214772  6630           1
   7 4       1   f        3.11    22   Response    1 262086  5957           1
   8 5       1   f        3.11    27   Response    2 302589   272           1
   9 6       1   f        3.11    32   Response    1 352703  7197           1
  10 Duration Uncertainty.1 ReqTime ReqDur Stim.Type Pair.Index    Type Event.Code
  11 1     2599             3       0   next       hit          7 Picture   RO26.jpg
  12 2     2800             2       0   next incorrect         12 Picture   RO19.jpg
  13 3     6798             2       0   next       hit         17 Picture   RS23.jpg
  14 4     5999             2       0   next incorrect         22 Picture   OF22.jpg
  15 5      400             2       0   next       hit         27 Picture   AT08.jpg
  16 6     7398             2       0   next       hit         32 Picture   AT30.jpg
  17 testid EC1
  18 1  test2  RO
  19 2  test2  RO
  20 3  test2  RS
  21 4  test2  OF
  22 5  test2  AT
  23 6  test2  AT

Exercises

Create the five plots and save them into a file. * create a plot using ggplot, map the variable EC1 to x and use geom\_bar() * now to the plot again, but add another aesthetic: fill (colour of the filling); map fill to Stim.Type * add the position argument to geom\_bar(), set it to "fill" * now add \texttt{facet\_wrap(~testid)} to show the same graph per time * make a graph facetted per child showing stacked hit/incorrect bars with time on the x axis

Exercises

  • create a plot using ggplot, map the variable EC1 to x and use geom\_bar()

   1 > ggplot(data,aes(x=EC1)) +
   2 +     geom_bar()
   3 >
   4 > ggsave("plot1.png")
   5 Saving 16 x 9.13 in image

<img alt='sesssion2/plot1.png' src='-1' />

Exercises

  • now to the plot again, but add another aesthetic: fill (colour of the filling); map fill to Stim.Type

   1 > ggplot(data,aes(x=EC1,fill=Stim.Type)) +
   2 +     geom_bar()
   3 >
   4 > ggsave("plot2.png")
   5 Saving 16 x 9.13 in image

<img alt='sesssion2/plot2.png' src='-1' />

Exercises

  • add the position argument to geom\_bar(), set it to "fill"

   1 > ggplot(data,aes(x=EC1,fill=Stim.Type)) +
   2 +     geom_bar(position = "fill")
   3 >
   4 > ggsave("plot3.png")
   5 Saving 16 x 9.13 in image

<img alt='sesssion2/plot3.png' src='-1' />

Exercises

  • now add \texttt{facet\_wrap(~testid)} to show the same graph per time

   1 > ggplot(data,aes(x=EC1,fill=Stim.Type)) +
   2 +     geom_bar(position = "fill") +
   3 +     facet_wrap(~testid)
   4 >
   5 > ggsave("plot4.png")
   6 Saving 16 x 9.13 in image

<img alt='sesssion2/plot4.png' src='-1' />

Exercises

  • now add \texttt{facet\_wrap(~testid)} to show the same graph per time

   1 > ggplot(data,aes(x=EC1,fill=Stim.Type)) +
   2 +     geom_bar(position = "fill") +
   3 +     facet_wrap(~testid,scales = "free")
   4 >
   5 > ggsave("plot4a.png")
   6 Saving 16 x 9.13 in image

<img alt='sesssion2/plot4a.png' src='-1' />

Exercises

  • make a graph facetted per child showing stacked hit/incorrect bars with time on the x axis

   1 > ggplot(data,aes(x=testid,fill=Stim.Type)) +
   2 +     geom_bar(position = "fill") +
   3 +     facet_wrap(~ Subject)
   4 > ggsave("plot5.png")
   5 Saving 16 x 9.13 in image

<img alt='sesssion2/plot5.png' src='-1' />

Introduction

The dplyr package makes each of these steps as fast and easy as possible by:

  • Elucidating the most common data manipulation operations, so that your options are helpfully constrained when thinking about how to tackle a problem.
  • Providing simple functions that correspond to the most common data manipulation verbs, so that you can easily translate your thoughts into code.
  • Using efficient data storage backends, so that you spend as little time waiting for the computer as possible.

Scales

What if we want to change the colours?

  • this leads to another important type of component not yet mentioned
  • if you map a variable to a aesthetic is these done in a default way, in this case some reddish colour is mapped to hit while light blue is mapped to incorrect; in addition a discrete range of colours is automatically used
  • these rules of mapping are called scales
  • different type of scales exists for the axes, colours, shapes etc, some of them exists in discrete and continuous versions, some in just one of them (in general one can say, everytime there can be a legend there is a scale)
  • the name convention: scale\_aesthetic\_specification. for example scale\_x\_discrete for customizing a discrete x axis (e.g. in barplots)

Changing a Scale

  • to change our discrete colour scale for the filling we type \footnotesize

   1 > ggplot(data,aes(x=EC1,fill=Stim.Type)) +
   2 +     geom_bar(position = "fill") +
   3 +     facet_wrap(~testid,scales = "free") +
   4 +     scale_fill_manual(values=c("forestgreen","firebrick"))

<img alt='sesssion2/ggp10.png' src='-1' />

Changing a Scale

There are other ways to customize a discrete colour/fill scales

  • scale\_colour\_grey()
  • scale\_colour\_hue()
  • scale\_colour\_brewer()

Changing a Scale

   1 > ggplot(data,aes(x=EC1,fill=Stim.Type)) +
   2 +     geom_bar(position = "fill") +
   3 +     facet_wrap(~testid,scales = "free") +
   4 +         scale_fill_grey()
   5 > ggplot(data,aes(x=EC1,fill=Stim.Type)) +
   6 +     geom_bar(position = "fill") +
   7 +     facet_wrap(~testid,scales = "free") +
   8 +         scale_fill_hue(h=c(180,360))
   9 > ggplot(data,aes(x=EC1,fill=Stim.Type)) +
  10 +     geom_bar(position = "fill") +
  11 +     facet_wrap(~testid,scales = "free") +
  12 +     scale_fill_brewer(type = "div",palette = 2)

RstatisTik/RstatisTikPortal/RcourSe/CourseOutline/GridGraphics (zuletzt geändert am 2015-05-02 18:42:40 durch mandy.vogel@googlemail.com)