
Introduction to R

Mandy Vogel

University Leipzig

September 28, 2015

Mandy Vogel mandy.vogel@googlemail.com 1/107
1/107

Overview
The big plan

R Intro

Packages

First Session

Citation/License

Objects

Combining Data Frames

Reading Data

The Apply Family
apply()
tapply()

Putting it all together

Mandy Vogel mandy.vogel@googlemail.com 2/107
2/107

Table of Contents I
The big plan

R Intro

Packages

First Session

Citation/License

Objects

Combining Data Frames

Reading Data

The Apply Family
apply()
tapply()

Putting it all together

Mandy Vogel mandy.vogel@googlemail.com 3/107
3/107

today and next week
• Today
◦ preliminaries
◦ objects/data structures
◦ combining data frames
◦ indexing
◦ reading data
◦ apply family
◦ reading the data files

• next time
◦ data manipulation with dplyr
◦ dates and times with lubridate
◦ stringr/tidyr
◦ graphics with ggplot2
◦ classical tests
◦ functions - simulations understanding classical tests

Mandy Vogel mandy.vogel@googlemail.com 4/107
4/107

Table of Contents I
The big plan

R Intro

Packages

First Session

Citation/License

Objects

Combining Data Frames

Reading Data

The Apply Family
apply()
tapply()

Putting it all together

Mandy Vogel mandy.vogel@googlemail.com 5/107
5/107

What’s R?

• R is a high-level language and an environment for data
analysis and graphics

• influenced by S (Becker, Chamber, Wilks) and Scheme
(Sussman)

• and created by Ross Ihaka and Robert Gentleman at the
university of Auckland

• R is free.
• R is open source.
• R is a dialect of S system.

Mandy Vogel mandy.vogel@googlemail.com 6/107
6/107

What R can do...

R provides a wide variety of statistical and graphical techniques
including
• linear and nonlinear modelling
• classical statistical tests
• time-series analysis
• classification
• clustering and many more

R is easily extensible, can produce publication-quality graphs
including mathematical symbols; dynamic and interactive
graphics are available through additional packages.

Mandy Vogel mandy.vogel@googlemail.com 7/107
7/107

What R can do...

R provides a wide variety of statistical and graphical techniques
including
• linear and nonlinear modelling
• classical statistical tests
• time-series analysis
• classification
• clustering and many more
R is easily extensible, can produce publication-quality graphs
including mathematical symbols; dynamic and interactive
graphics are available through additional packages.

Mandy Vogel mandy.vogel@googlemail.com 7/107
7/107

Pros

• R is free and R is open source
• there is a lot of material and books available
• there is a lot of help on the web, including developers who

are active in mailing lists
• most of your problems are already solved and with a high

probability the solution is available from one of the
repositories (as package)

• there are a lot of intuitive GUIs
• the language is easy to learn and also intuitive
• the graphics capabilities are impressive

Mandy Vogel mandy.vogel@googlemail.com 8/107
8/107

R is Different

• R is a little different from other packages for statistical
analysis

• these differences make R very powerful, but for new users
they can sometimes be confusing - that’s normal!

Mandy Vogel mandy.vogel@googlemail.com 9/107
9/107

Nothing is lost or hidden

• statistical packages provide canned procedures to address
common statistical problems

• canned procedures are useful for routine analysis, but they
are also limiting - you can only do what the programmer lets
you do

• in R, the result of statistical calculation are always accessible,
so
◦ you can use them for further calculations
◦ you can always see how calculations were done

Mandy Vogel mandy.vogel@googlemail.com 10/107
10/107

Cons

• there is a LOT of help on the web
• with a high probability there is more than one solution for

your problem
• there are a lot of intuitive GUIs so you have to decide what

you want (so first you have to know what you want)
• the real power of R (i.e. high flexibility) is not entirely

available through GUIs
• and therefore the learning curve can be lengthy in the

beginning (but soon accelerating ;)

Mandy Vogel mandy.vogel@googlemail.com 11/107
11/107

The number of analytics jobs for the more
popular software (250 jobs or more, 2/2014).

Mandy Vogel mandy.vogel@googlemail.com 12/107
12/107

O’Reilly Data Science Survey results for 2012
and 2013 combined.

Mandy Vogel mandy.vogel@googlemail.com 13/107
13/107

Impact of data analysis software on academic
publications as measured by hits on Google
Scholar

Mandy Vogel mandy.vogel@googlemail.com 14/107
14/107

Impact of data analysis software on academic
publications as measured by hits on Google
Scholar

Mandy Vogel mandy.vogel@googlemail.com 15/107
15/107

Use it!

The best way to learn R is to use it!

Mandy Vogel mandy.vogel@googlemail.com 16/107
16/107

Where can I get it?
For the basic installation CRAN is a good place to start
• CRAN stands for Comprehensive R Archive Network
• http://cran.r-project.org
◦ Microsoft Windows: :: http://cran.r-project.org/bin/windows/base/
◦ MacOS: :: http://cran.r-project.org/bin/macosx/
◦ Linux: :: http://cran.r-project.org/bin/linux/

• for mac and pc users: just download and install the precompiled
binaries

• for ubuntu users: add
deb http://ftp5.gwdg.de/pub/misc/cran/bin/linux/ubuntu
vivid/
to
/etc/apt/sources.list;
detailed howto:
http://cran.r-project.org/bin/linux/ubuntu/

• https://cran.r-project.org/mirrors.html
• https://cran.r-project.org/mirmon_report.html

Mandy Vogel mandy.vogel@googlemail.com 17/107
17/107

http://cran.r-project.org/bin/linux/ubuntu/
https://cran.r-project.org/mirrors.html
https://cran.r-project.org/mirmon_report.html

The R-Commander

The R commander, developed by John Fox is a complete GUI for
R. It is implemented in the package Rcmdr:
• Rcmdr has a comprehensive menu, which includes data

reading, summaries, statistical analyses, etc.
• When the menu is activated, the Rcmdr will generate an R

script. This script can be used as a log for documentation or
for self learning.

• It has excellent graphical tools.

Mandy Vogel mandy.vogel@googlemail.com 18/107
18/107

The R-Commander

Mandy Vogel mandy.vogel@googlemail.com 19/107
19/107

The R-Commander

To install Rcmdr go to Packages→ Install package(s) (or simply
type install.packages("Rcmdr")), then choose a CRAN
mirror close to you, than OK. A window with a list of packages
will pop-up, on this list choose Rcmdr and OK. A bundle of
packages will be automatically installed.
To run the ”R Commander” GUI type at the prompt line:

> library(Rcmdr)

This will start a GUI similar to other statistical software.
Therefore, any typical process, like read data, produce plots,
make statistical analyses, etc. will be made by clicking the
appropriate menu.

Mandy Vogel mandy.vogel@googlemail.com 20/107
20/107

Getting R-Studio

RStudio is a free and open source integrated development
environment (IDE) for R. You can run it on your desktop
(Windows, Mac, or Linux) or even over the web using RStudio
Server. Available at http://rstudio.org/ (install R first)

Mandy Vogel mandy.vogel@googlemail.com 21/107
21/107

Getting Deducer
Deducer is designed to be a free easy-to-use alternative to
proprietary data analysis software such as SPSS and Minitab. It
has a menu system to perform common data manipulation and
analysis tasks, and an excel-like spreadsheet in which to view
and edit data frames. Available at http://www.deducer.org;
for Windows there is a all-in-one installer (incl. R)

Mandy Vogel mandy.vogel@googlemail.com 22/107
22/107

Deducer Ubuntu

There were some problems with color setting in the plot builder
when they are defined via the GUI. They are fixed in the recent
version (0.6-3)
• if you haven’t installed R yet, first install r-base-dev

r-recommended (sudo apt-get install r-base-dev
r-recommended)

• Open R and at the prompt enter:
install.packages(c("JGR","Deducer"))

• Run JGR() to open JGR, and library(Deducer) to load
Deducer

Mandy Vogel mandy.vogel@googlemail.com 23/107
23/107

Table of Contents I
The big plan

R Intro

Packages

First Session

Citation/License

Objects

Combining Data Frames

Reading Data

The Apply Family
apply()
tapply()

Putting it all together

Mandy Vogel mandy.vogel@googlemail.com 24/107
24/107

Packages
The capabilities of R are extended through user-created packages,
which allow specialized statistical techniques, graphical devices,
import/export capabilities, reporting tools, etc.

These packages are developed primarily in R, and sometimes in
Java, C and Fortran. A core set of packages is included with the
installation of R, 4300 (as of March 2011) with more than 7100 +
1000 (BioC) + 1100 (BioC Annotation/Exp.) (as of September 2015)
available at the Comprehensive R Archive Network (CRAN),
Bioconductor, and other repositories.

Mandy Vogel mandy.vogel@googlemail.com 25/107
25/107

R taskviews
• you can google your problem or you use

http://www.rseek.org/ or
http://www.rdocumentation.org/ instead of
www.google.com

• http://cran.r-project.org/web/views/
• before you install a new package: help.search() allows for

searching the help system for documentation matching a
given character string in the (file) name, alias, title, concept
or keyword entries (or any combination thereof), using either
fuzzy matching or regular expression matching.(installed help
system)

• there are many blogs or forums, a very popular is
http://stackoverflow.com/ or
http://stackexchange.com/ (they are helpful for all other
statistical packages as well)

Mandy Vogel mandy.vogel@googlemail.com 26/107
26/107

http://www.rseek.org/
http://www.rdocumentation.org/
http://stackoverflow.com/
http://stackexchange.com/

Packages

• An R installation contains a library of packages. Some of
these packages are part of the basic installation. These
packages have the recommended status.

• others can be downloaded from CRAN or BioConductor or
from other repositories

• A package is loaded into R using the library() or the
require() command. For example to load the survival
package you should enter
> library(survival)

• you need to reload a package when you start a new R session

Mandy Vogel mandy.vogel@googlemail.com 27/107
27/107

Getting Packages

• You can download a package from CRAN and install it by
using the package menu.

• Another effective way to download and install a package is by
command line. For example the following line install the R
commander package with all its dependencies:
> install.packages("Rcmdr", dependencies=TRUE)

• bioconductor packages have their own installation routine,
which is documented on the website
http://www.bioconductor.org/

Mandy Vogel mandy.vogel@googlemail.com 28/107
28/107

http://www.bioconductor.org/

Software Container

• if you know about docker: there are R and BioConductor
Docker container available:
◦ https://github.com/rocker-org/rstudio-daily
◦ https://www.bioconductor.org/help/docker/

Mandy Vogel mandy.vogel@googlemail.com 29/107
29/107

https://github.com/rocker-org/rstudio-daily
https://www.bioconductor.org/help/docker/

Table of Contents I
The big plan

R Intro

Packages

First Session

Citation/License

Objects

Combining Data Frames

Reading Data

The Apply Family
apply()
tapply()

Putting it all together

Mandy Vogel mandy.vogel@googlemail.com 30/107
30/107

First Session I

• start RStudio
• choose your working directory (via a menu or by typing

setwd('/your/Rworkdirectory/'))
• R works fundamentally by the question-and-answer model:

you enter a line with a command and press Enter (←↩). Then
the program dœs something and prints or stores the results.
Then it asks for more input. When R is ready for input, it
prints out its prompt, a ”>”. if you see a “+” R waits for you
to end to line; with ESC you can go back to ”>”

• It is possible to use R as a text-only application, and also in
batch mode (Rscript skript.r arg1 arg2)

Mandy Vogel mandy.vogel@googlemail.com 31/107
31/107

The Workspace

• During a session you create a workspace. The workspace
contains all variables created during the session

• for example typing
> x <- rnorm(100, mean=2, sd=4)
creates a variable x containing a vector with 100 random
numbers normal distributed with mean 2 and standard
deviation 4

• to see the contents of a variable just type its name
> x
[1] 2.663558 2.187709 -1.849147

5.566364 2.5016523.046095 ...

Mandy Vogel mandy.vogel@googlemail.com 32/107
32/107

Showing an Object
• more sophisticated R objects have print methods which do

not show you the object itself but a kind of summary
> xx <- density(x)
> xx

Call:
density.default(x = x)

Data: x (100 obs.); Bandwidth 'bw' = 1.465

x y
Min. :-9.711 Min. :0.000034
1st Qu.:-2.976 1st Qu.:0.005759
Median : 3.759 Median :0.030555
Mean : 3.759 Mean :0.037080
3rd Qu.:10.495 3rd Qu.:0.068267
Max. :17.230 Max. :0.088606

Mandy Vogel mandy.vogel@googlemail.com 33/107
33/107

First Plot

• To plot the values contained in x type
> plot(x)

Mandy Vogel mandy.vogel@googlemail.com 34/107
34/107

ls()/objects()

• All variables, functions and diverse objects can be seen by
typing ls() and the newer, more verbose version of it
objects() function. Thus in our example we will have
> ls()
[1] "x" "xx"

• in R studio you see the content of the workspace in the
Environment tab

Mandy Vogel mandy.vogel@googlemail.com 35/107
35/107

library()/require()

• we have seen the use of library() to load a package
• typing library() without argument gives you a list of

installed packages per installation path
• a more detailed list of installed packages including path as

well but also a lot of additional information can be achieved
by installed.packages()

Mandy Vogel mandy.vogel@googlemail.com 36/107
36/107

Quitting

• quitting R is done with the q() function
> q()
at the command prompt. You will be asked to save your
”workspace image”.

• if you save the work space, all R objects can be reloaded in a
new session, but be careful. It is recommended to rather
save data explicitly

Mandy Vogel mandy.vogel@googlemail.com 37/107
37/107

Help

• Entering the command
> help.start()

at the command line, will launch an extensive online help that
can be read using a Web browser such as Firefox or Internet
Explorer. Another way to access to these ”help” pages is by
the menu bar on Windows. Notice that the HTML version of
the help system has a very useful ”Search Engine and
Keywords”.

• typing ?command gives the help for a specific command

Mandy Vogel mandy.vogel@googlemail.com 38/107
38/107

First Session

Mandy Vogel mandy.vogel@googlemail.com 39/107
39/107

Table of Contents I
The big plan

R Intro

Packages

First Session

Citation/License

Objects

Combining Data Frames

Reading Data

The Apply Family
apply()
tapply()

Putting it all together

Mandy Vogel mandy.vogel@googlemail.com 40/107
40/107

Citation
Input
> citation()

To cite R in publications use:

R Development Core Team (2012). R: A language and environment for
statistical computing. R Foundation for Statistical Computing,
Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org/.

A BibTeX entry for LaTeX users is

@Manual,
title = R: A Language and Environment for Statistical Computing,
author = R Development Core Team,
organization = R Foundation for Statistical Computing,
address = Vienna, Austria,
year = 2012,
note = ISBN 3-900051-07-0,
url = http://www.R-project.org/,

We have invested a lot of time and effort in creating R, please cite it
when using it for data analysis. See also ‘citation("pkgname")’ for
citing R packages.

Mandy Vogel mandy.vogel@googlemail.com 41/107
41/107

Licence

Licence
R is mainly distributed under the terms of the GNU General
Public License, either Version 2, June 1991 or Version 3, June
2007. Core Bioconductor packages are typically licensed under
Artistic-2.0. You get detailed information with: license(),
RShowDoc("COPYING"),
packageDescription("packagename")$License

Mandy Vogel mandy.vogel@googlemail.com 42/107
42/107

Table of Contents I
The big plan

R Intro

Packages

First Session

Citation/License

Objects

Combining Data Frames

Reading Data

The Apply Family
apply()
tapply()

Putting it all together

Mandy Vogel mandy.vogel@googlemail.com 43/107
43/107

Data Structures

• R’s base data structures can be organized by
◦ their dimensionality and
◦ whether they are homogeneous or heterogeneous

Homogeneous Heterogeneous
1d Atomic Vector List
2d Matrix Data frame
nd Array

Mandy Vogel mandy.vogel@googlemail.com 44/107
44/107

str()

• given an object, the best way to understand its structure it’s
the str() command

• str() is short for structure and gives a compact, human
readable description of any R data structure

Mandy Vogel mandy.vogel@googlemail.com 45/107
45/107

str()

Input/Output
> require(ggplot2)
> example(scale_colour_brewer)
...
> str(dsamp)
'data.frame': 1000 obs. of 10 variables:
$ carat : num 2.02 1.01 0.52 1.57 0.82 1.17 0.78 1.05 0.28 0.74 ...
$ cut : Ord.factor w/ 5 levels "Fair"<"Good"<..: 3 5 5 4 5 3 4 4 5 3 ...
$ color : Ord.factor w/ 7 levels "D"<"E"<"F"<"G"<..: 5 4 4 6 1 4 6 1 2 2 ...
$ clarity: Ord.factor w/ 8 levels "I1"<"SI2"<"SI1"<..: 3 3 2 4 3 2 4 3 6 4 ...
$ depth : num 61.1 63 59.7 62.5 61.6 61.2 62.7 60.5 62.4 61.8 ...
$ table : num 58 57 56 58 57 58 58 60 56 58 ...
$ price : int 18236 5555 1042 9847 4135 5595 2646 5762 828 3180 ...
$ x : num 8.07 6.37 5.28 7.5 6.02 6.84 5.89 6.62 4.2 5.79 ...
$ y : num 8.16 6.4 5.31 7.42 6.06 6.86 5.82 6.53 4.16 5.82 ...
$ z : num 4.96 4.02 3.16 4.66 3.72 4.19 3.68 3.98 2.61 3.59 ...

Mandy Vogel mandy.vogel@googlemail.com 46/107
46/107

str()

Input/Output
> str(d)
List of 9
$ data :'data.frame': 1000 obs. of 10 variables:
..$ carat : num [1:1000] 2.02 1.01 0.52 1.57 0.82 1.17 0.78 1.05 0.28 0.74 ...

...
$ mapping :List of 3
..$ colour: symbol clarity
..$ x : symbol carat
..$ y : symbol price

...
$ coordinates:List of 1
..$ limits:List of 2
.. ..$ x: NULL
.. ..$ y: NULL
..- attr(*, "class")= chr [1:2] "cartesian" "coord"

...

Mandy Vogel mandy.vogel@googlemail.com 47/107
47/107

Vectors

• R’s basic data structure
• three common properties:
◦ type (typeof())
◦ lenth (length())
◦ attributes (attributes() - optional)

• there are four common types of atomic vectors:
◦ logical
◦ integer
◦ double (numeric)
◦ character

• usually created using c() (for concatenate/combine)
• flat structure

Mandy Vogel mandy.vogel@googlemail.com 48/107
48/107

Types/Cœrcion

• while combining two or more vectors of different types, the
will be cœrced to the most flexible type

• types from least to most flexible are: logical, integer, double,
character

Mandy Vogel mandy.vogel@googlemail.com 49/107
49/107

Cœrcion - Exercises

• Test your understanding of vector cœrcion rules by
predicting the output of the following uses of c():

Input
> c(1, FALSE)
> c("a", 1)
> c(list(1), "a")
> c(TRUE, 1L)

• Why is 1 == ”1” true? Why is -1 < FALSE true? Why is ”one” <
2 false?

•

Mandy Vogel mandy.vogel@googlemail.com 50/107
50/107

length

• should be self explanatory

Mandy Vogel mandy.vogel@googlemail.com 51/107
51/107

attributes

The most important are:
• names
• dimensions
• class

Mandy Vogel mandy.vogel@googlemail.com 52/107
52/107

factors

A factor is a vector that can contain only predefined values
(categorical variable).
• built on top of integer values with the following attributes:
◦ class: factor
◦ levels: set of allowed values
◦ labels

Mandy Vogel mandy.vogel@googlemail.com 53/107
53/107

factors - Exercise

• What happens to a factor when you modify its levels? (Hint:
use summary() and as.numeric())

Input
> f1 <- factor(letters)
> levels(f1) <- rev(levels(f1))
> f2 <- rev(factor(letters))
> f3 <- factor(letters, levels = rev(letters))
> f4 <- c(f2,f3)

Mandy Vogel mandy.vogel@googlemail.com 54/107
54/107

Lists

• lists are different from atomic vectors because their
elements can be of any type

• constructing lists is done by list()
• they can be recursive, i.e. lists can contain lists can contain

lists etc
• they can be combined by c()

Mandy Vogel mandy.vogel@googlemail.com 55/107
55/107

Data Frames

• most common way to store data in R
• under the hood a data frame is a list of equal-length vectors
• so it is a 2-dimensional structure
• the length() of a data frame is the length of the underlying

list (i.e. the number of columns)
• ncol(), nrow(), dim(), names(), rownames(),

colnames()
• constructing is done by data.frame()

Mandy Vogel mandy.vogel@googlemail.com 56/107
56/107

Table of Contents I
The big plan

R Intro

Packages

First Session

Citation/License

Objects

Combining Data Frames

Reading Data

The Apply Family
apply()
tapply()

Putting it all together

Mandy Vogel mandy.vogel@googlemail.com 57/107
57/107

rbind()

• rbind() can be used to combine two dataframes (or
matrices) in the sense of adding rows, the column names and
types must be the same for the two objects

Input/Output
> x <- data.frame(id=1:3,score=rnorm(3))
> y <- data.frame(id=13:15,score=rnorm(3))
> rbind(x,y)

id score
1 1 0.71121163
2 2 -0.62973249
3 3 1.17737595
4 13 -0.45074940
5 14 -0.01044197
6 15 -1.05217176

Mandy Vogel mandy.vogel@googlemail.com 58/107
58/107

cbind()

• cbind() can be used to combine two dataframes (or
matrices) in the sense of adding columns, the number of
rows must be the same for the two objects

Input/Output
> cbind(x,y)

id score1 score2 score3
1 1 0.11440705 0.14536778 -1.1773241
2 2 -1.62862651 0.02020604 0.5686415
3 3 0.05335811 0.25462270 0.8844987
4 4 -0.19931734 0.15625511 0.9287316
5 5 -1.15217836 -1.79804503 -0.7550234

• it is not recommended to use cbind() to combining data
frames

Mandy Vogel mandy.vogel@googlemail.com 59/107
59/107

merge() I

• merge() is the command of choice for merging or joining
data frames

• it is the equivalent of join in sql
• there are four cases
◦ inner join
◦ left outer join
◦ right outer join
◦ full outer join

Mandy Vogel mandy.vogel@googlemail.com 60/107
60/107

merge() II

Input/Output
> (d1 <- data.frame(id=LETTERS[c(1,2,3)],day1=sample(10,3)))

id day1
1 A 3
2 B 4
3 C 5
> (d2 <- data.frame(id=LETTERS[c(1,3,5,6)],day2=sample(10,4)))

id day2
1 A 7
2 C 10
3 E 3
4 F 6

Mandy Vogel mandy.vogel@googlemail.com 61/107
61/107

inner join

• inner join means: keep only the cases present in both of the
data frames

Input/Output
> merge(d1,d2)

id day1 day2
1 A 3 7
2 C 5 10

Mandy Vogel mandy.vogel@googlemail.com 62/107
62/107

left outer join

• left outer join means: keep all cases of the left data frame no
matter if they are present in the right data frame (all.x=T)

Input/Output
> merge(d1,d2,all.x = T)

id day1 day2
1 A 3 7
2 B 4 NA
3 C 5 10

Mandy Vogel mandy.vogel@googlemail.com 63/107
63/107

right outer join

• right outer join means: keep all cases of the right data frame
no matter if they are present in the left data frame (all.y=T)

Input/Output
> merge(d1,d2,all.y = T)

id day1 day2
1 A 3 7
2 C 5 10
3 E NA 3
4 F NA 6

Mandy Vogel mandy.vogel@googlemail.com 64/107
64/107

full outer join

• full outer join means: keep all cases of both data frames
(all=T)

Input/Output
> merge(d1,d2,all = T)
id day1 day2

1 A 3 7
2 B 4 NA
3 C 5 10
4 E NA 3
5 F NA 6

Mandy Vogel mandy.vogel@googlemail.com 65/107
65/107

merge()

• if not stated otherwise R uses the intersect of the names of
both data frames, in our case only id

• you can specify these columns directly by
by=c("colname1","colname2") if the columns are named
identical or

• using
by.x=c("colname1.x","colname2.x"),
by.y=c("colname1.y","colname2.y") if they have
different names in the data frames

Mandy Vogel mandy.vogel@googlemail.com 66/107
66/107

merge()

• now read in the file personendaten.txt using the appropriate
command

• join the demographics with our pre1 data frame (even though
it dœs not make sense now)

Mandy Vogel mandy.vogel@googlemail.com 67/107
67/107

Reduce()

• is a higher order function (functional)
• Reduce() uses a binary function (like rbind() or merge())

to combine successively the elements of a given list
• it can be used if you have not only two but many data frames

Mandy Vogel mandy.vogel@googlemail.com 68/107
68/107

Reduce()

• first we make up 4 artifical data frames

Mandy Vogel mandy.vogel@googlemail.com 69/107
69/107

Reduce()

Input/Output
> (d1 <- data.frame(id=LETTERS[c(1,2,3)],day1=sample(10,3)))

id day1
1 A 3
2 B 1
3 C 7
> (d2 <- data.frame(id=LETTERS[c(1,3,5,6)],day2=sample(10,4)))

id day2
1 A 8
2 C 2
3 E 5
4 F 3
> (d3 <- data.frame(id=LETTERS[c(2,4:6)],day3=sample(10,4)))

id day3
1 B 8
2 D 3
3 E 4
4 F 10
> (d4 <- data.frame(id=LETTERS[c(1:5)],day4=sample(10,5)))

id day4
1 A 2
2 B 7
3 C 8
4 D 9
5 E 1

Mandy Vogel mandy.vogel@googlemail.com 70/107
70/107

Reduce()

• now we use Reduce() in combination with merge()

Input/Output
> Reduce(merge,list(d1,d2,d3,d4))
[1] id day1 day2 day3 day4
<0 Zeilen> (oder row.names mit Länge 0)

• and what we get is an empty data frame
• well this isn’t exactly what we wanted, so why?
• it is because the default behavior of merge() is set all=F,

so we get only complete lines which is in this case - none
• so we have to define a wrapper function which only change

this argument to all=T

Mandy Vogel mandy.vogel@googlemail.com 71/107
71/107

Reduce()

• now we use Reduce() in combination with merge()

Input/Output
> Reduce(function(x,y) { merge(x,y, all=T) },
+ list(d1,d2,d3,d4))

id day1 day2 day3 day4
1 A 3 8 NA 2
2 B 1 NA 8 7
3 C 7 2 NA 8
4 E NA 5 4 1
5 F NA 3 10 NA
6 D NA NA 3 9

• which is exactly what we want

Mandy Vogel mandy.vogel@googlemail.com 72/107
72/107

Reduce()
• a second example in combination with rbind()

Input/Output
> d4$day <- names(d4)[2]
> names(d4)[2] <- "score"
> Reduce(function(x,y) { y$day <- names(y)[2]
+ names(y)[2] <- "score"
+ rbind(x,y) } ,
+ list(d1,d2,d3), init = d4)

id score day
1 A 2 day4
2 B 7 day4
3 C 8 day4
4 D 9 day4
...

• which is exactly what we want

Mandy Vogel mandy.vogel@googlemail.com 73/107
73/107

Excercises - Merging

• in the rstuff.r file you find the code to create three data
frames: m1, m2 and subjdata

• combine these three data sets using merge()

Mandy Vogel mandy.vogel@googlemail.com 74/107
74/107

Indexing with Positive Integers

• there are circumstances where we want to select only some
of the elements of a vector/array/dataframe/list

• this selection is done using subscripts (also known as indices)
• subscripts have square brackets [2] while functions have

round brackets (2)
• Subscripts on vectors, matrices, arrays and dataframes have

one set of square brackets [6], [3,4] or [2,3,2,1]
• while subscripts on lists have double square brackets [[2]] or

[[i,j]]
• when a subscript appears as a blank it is understood to

mean all of thus
◦ [,4] means all rows in column 4 of an object
◦ [2,] means all columns in row 2 of an object.

Mandy Vogel mandy.vogel@googlemail.com 75/107
75/107

Indexing with Positive Integers

• A vector of positive integers as index:The index vector can
be of any length and the result is of the same length as the
index vector. For example,

Input/Output
> letters[1:3]
[1] "a" "b" "c"
> letters[c(1:3,1:3)]
[1] "a" "b" "c" "a" "b" "c"
>

Mandy Vogel mandy.vogel@googlemail.com 76/107
76/107

Logical Indexing

• A logical vector as index: Values corresponding to T values in
the index vector are selected and those corresponding to F
or NA are omitted. For example,

Input/Output
> x<-c(1,2,3,NA)
> x[!is.na(x)]
[1] 1 2 3

creates a vector without missing values. Also
> x[is.na(x)] <- 0
> x
[1] 1 2 3 0
replaces the missing value by zeros.

Mandy Vogel mandy.vogel@googlemail.com 77/107
77/107

Logical Indexing

A common operation is to select rows or columns of data frame
that meet some criteria. For example, to select those rows of
painters data frame with Colour ≥ 17:

Input/Output
> library(MASS)
> attach(painters)
> painters[Colour >=17,]

Composition Drawing Colour Expression School
Bassano 6 8 17 0 D
Giorgione 8 9 18 4 D
Pordenone 8 14 17 5 D
...

Mandy Vogel mandy.vogel@googlemail.com 78/107
78/107

Logical Indexing

We may want to select on more than one criterion. We can
combine logical indices by the ’and’, ’or’ and ’not’ operators &, |
and !. For example,

Input/Output
> painters[Colour >=17 & Composition > 10, c(1,2,3)]

Composition Drawing Colour
Titian 12 15 18
Rembrandt 15 6 17
Rubens 18 13 17
Van Dyck 15 10 17

Mandy Vogel mandy.vogel@googlemail.com 79/107
79/107

List of Logical Operations

Operation Description
! logical NOT
& logical AND
| logical OR
< less than
<= less than or equal to
> greater than
>= greater than or equal to
== logical equals (double =)
! = not equal
&& AND with IF
|| OR with IF
xor(x,y) exclusive OR
isTRUE(x) an abbreviation of identical(TRUE,x)

Mandy Vogel mandy.vogel@googlemail.com 80/107
80/107

Logical Indexing

If we want to select a subgroup, for example those with schools
A, B, and D. We can generate a logical vector using the %in%
operator as follows:

Input/Output
> painters[School %in% c("A","C","D"),]
Da Udine 10 8 16 3 A
Da Vinci 15 16 4 14 A
Del Piombo 8 13 16 7 A
...

Mandy Vogel mandy.vogel@googlemail.com 81/107
81/107

Indexing

A vector character strings with variable names can be used to
extract those variables relevant for analysis. This is very useful
when we have a large number of variables and we need to work
with a few ones. For example,

Input/Output
> names(painters)
[1] "Composition" "Drawing" "Colour" "Expression" "School"
> painters[1:3,c("Drawing","Expression")]

Drawing Expression
Da Udine 8 3
Da Vinci 16 14
Del Piombo 13 7

Mandy Vogel mandy.vogel@googlemail.com 82/107
82/107

Indexing with Characters

• a vector of character strings could a index on a vector when
the vector has names:

Input/Output
> x <- c(1:3,NA)
> names(x)<-letters[1:4]
> x
a b c d
1 2 3 NA

> x[c("a","c")]
a c
1 3

Mandy Vogel mandy.vogel@googlemail.com 83/107
83/107

Trimming Vectors Using Negative Indices

• an extremely useful facility is to use negative indices to drop
terms from a vector

• suppose we wanted a new vector, z, to contain everything
but the first element of x

Input/Output
> x<- c(5,8,6,7,1,5,3)
> (z <- x[-1])
[1] 8 6 7 1 5 3

Mandy Vogel mandy.vogel@googlemail.com 84/107
84/107

Indexing - Exercises

First try to understand the following commands:

Input
> x <- c(2, 7, 0, 9, 10, 23, 11, 4, 7, 8, 6, 0)
> x[4]
> x[3:5]
> x[c(1, 5, 8)]
> x[x > 10]
> x[(1:6) * 2]
> x[x == 0] <- 1
> x
> ifelse(round(x/2) == x/2, "even", "odd")

Mandy Vogel mandy.vogel@googlemail.com 85/107
85/107

Indexing - Exercises

Now try the following:
1. Display every third element in x
2. Display elements that are less than 10, but greater than 4
3. Modify the vector x, replacing by 10 all values that are greater

than 10
4. Modify the vector x, multiplying by 2 all elements that are

smaller than 5
5. Create a new vector y with elements 0,1,0,1, . . . (12 elements)

and a vector z that equals x when y=0 and 3x when y=1.
(You can do it using ifelse, but there are other possibilities)

Mandy Vogel mandy.vogel@googlemail.com 86/107
86/107

Table of Contents I
The big plan

R Intro

Packages

First Session

Citation/License

Objects

Combining Data Frames

Reading Data

The Apply Family
apply()
tapply()

Putting it all together

Mandy Vogel mandy.vogel@googlemail.com 87/107
87/107

Reading Data

The most convenient way of reading data into R is via the
function called read.table(). It requires that the data is in
”ASCII format”, or a ”flat file” as created with Windows’ NotePad
or any plain-text editor. The result of read.table() is a data
frame.

It is expected that each line of the data file corresponds to a
subject information, that the variables are separated by blanks
or any other separator symbol (e.g., ”,”, ”;”). The first line of the
file can contain a header (header=T) giving the names of the
variables, which is highly recommended!

Mandy Vogel mandy.vogel@googlemail.com 88/107
88/107

read.table()

As an example we read in the data contained in the file
fishercats.txt

Input/Output
> read.table("week1/data/fishercats.txt",
+ sep=" ",header=T)

Sex Bwt Hwt
1 F 2.0 7.0
2 F 2.0 7.4
3 F 2.0 9.5
4 F 2.1 7.2
5 F 2.1 7.3
....

These data correspond to the heart and body weights of
samples of male and female cats (R. A. Fisher, 1947).

Mandy Vogel mandy.vogel@googlemail.com 89/107
89/107

read.table()

The first argument corresponds to the data file, the second to
the fields separator and the third header=T specifies that the
first line is a header with variable names. Important: the
character variables will be automatically read as factors.
There is a variant for reading data from an url:

Input/Output
> winer <- read.table(
+ "http://socserv.socsci.mcmaster.ca/jfox/Courses/R/ICPSR/Winer.txt",
+ header=T)

Mandy Vogel mandy.vogel@googlemail.com 90/107
90/107

read.table()

There are other variants of read.table function alike :
• read.csv() this function assumes that fields are separated

by a comma instead of whites spaces
• read.csv2() this function assumes that the separate

symbol is the semicolon, but use a comma as the decimal
point (some programs, e.g., Microsoft Excel, generate this
format when running in European systems)

• the function scan() is a powerful, but less friendly, way to
read data in R; you may need it, if you want to read files with
different numbers ov values per line

Mandy Vogel mandy.vogel@googlemail.com 91/107
91/107

Reading data from the clipboard

With the function read.delim() or also read.table() it is
possible to read data directly from the clipboard.
For example mark and copy some columns from an Excel
spreadsheet and transfer this content to an R by

Input/Output
> mydata <- read.delim("clipboard",na.strings=".")
> str(mydata) # structure of the data

Mandy Vogel mandy.vogel@googlemail.com 92/107
92/107

The Data Editor

To interactively edit a data frame in R you can use the edit
function. For example:

Input/Output
> data(airquality)
> aq <-edit(airquality)

This brings up a spreadsheet-like editor with a column for each
variable in the data frame. See help(airquality) for the
contents of this data set. The function edit() leaves the
original data frame unchanged, the changed data frame is
assigned to aq. The function fix(x) invokes the function
edit(x) on x and assign the new (edited) version of x to x

Mandy Vogel mandy.vogel@googlemail.com 93/107
93/107

Reading Data from Other Programs

You can always use the export function from other (statistical)
software to export data from other statistical systems to a tab
or comma-delimited file and use the read.table(). However,
R has some direct methods.
The foreign package is one of the ”recommended” packages
in R. It contains routines to read files from SPSS (.sav format),
SAS (export libraries), EpiInfo (.rec), Stata, Minitab, and some
S-PLUS version 3 dump files. For example

Input/Output
> library(foreign)
> mydata <- read.spss("test.sav", to.data.frame=T)

read the test.sav SPSS data set and convert it to a data.frame.

Mandy Vogel mandy.vogel@googlemail.com 94/107
94/107

Reading Data from Excel Files

Input/Output
> library(XLConnect)
> setwd("/media/TRANSCEND/mpicbs/data/")
> my.wb <- loadWorkbook("Duncan.xls")
> sheets <- getSheets(my.wb)
> content <- readWorksheet(my.wb, sheet=1)
> head(content)

Col0 type income education prestige
1 accountant prof 62 86 82
2 pilot prof 72 76 83
3 architect prof 75 92 90
4 author prof 55 90 76
5 chemist prof 64 86 90
6 minister prof 21 84 87
>

Mandy Vogel mandy.vogel@googlemail.com 95/107
95/107

Reading Data from Excel Files
• whereas XLConnect is the most sophisticated R package to

read and write Excel files it depends on java and is therefore
a bit clumsy

• the relatively new package readxl dœs not depend on java
nor on perl

• up to now two commands: excelsheets(), read_excel()

Input/Output
> require(readxl)
Lade nötiges Paket: readxl
> x <- read_excel("week1/data/Duncan.xls")
> head(x)

NA type income education prestige
1 accountant prof 62 86 82
2 pilot prof 72 76 83
3 architect prof 75 92 90
4 author prof 55 90 76
5 chemist prof 64 86 90
6 minister prof 21 84 87

Mandy Vogel mandy.vogel@googlemail.com 96/107
96/107

Reading Data from Excel Files

If someone is really fond of Excel, RExcel
(http://rcom.univie.ac.at/download.html) is really worth the
effort. There is also a function reading MSAccess files
(mdb.get() from the Hmisc package)

Mandy Vogel mandy.vogel@googlemail.com 97/107
97/107

Something on Connections

The function read.table() opens a connection to a file, read
the file, and close the connection. However, for data stored in
databases, there exists a number of interface packages on
CRAN.
The RODBC package can set up ODBC connections to data
stored by common applications including Excel and Access (for
Excel and Access RODBC dœsn’t work on Unix but it is great for
data base connections). There are also more general ways to
build connections to data bases.
For up-to-date information on these matters, consult the ”R
Data Import/Export” manual that comes with the system.

Mandy Vogel mandy.vogel@googlemail.com 98/107
98/107

Table of Contents I
The big plan

R Intro

Packages

First Session

Citation/License

Objects

Combining Data Frames

Reading Data

The Apply Family
apply()
tapply()

Putting it all together

Mandy Vogel mandy.vogel@googlemail.com 99/107
99/107

Implicit Loops

A common application of loops is to apply a function to each
element of a set of values and collect the results in a single
structure.
In R this is done by the functions (but there is of course also
for()):
• lapply()
• sapply()
• apply()
• tapply()

Mandy Vogel mandy.vogel@googlemail.com 100/107
100/107

lapply()

Input/Output
> lapply(mtcars,mean)
$mpg
[1] 20.09062

$cyl
[1] 6.1875

$disp
[1] 230.7219

$hp
[1] 146.6875
...

Mandy Vogel mandy.vogel@googlemail.com 101/107
101/107

lapply()

Input/Output
> sapply(mtcars,mean)

mpg cyl disp hp drat wt qsec
20.090625 6.187500 230.721875 146.687500 3.596563 3.217250 17.848750

vs am gear carb
0.437500 0.406250 3.687500 2.812500

Mandy Vogel mandy.vogel@googlemail.com 102/107
102/107

apply()
• apply() this function can be applied to an array. Its

argument is the array, the second the dimension/s where we
want to apply a function and the third is the function. For
example

Input/Output
> x <- 1:12
> dim(x)<-c(2,2,3)
> apply(x,3,quantile) #calculate the quantiles

[,1] [,2] [,3] #for each 2x2 matrix
0% 1.00 5.00 9.00
25% 1.75 5.75 9.75
50% 2.50 6.50 10.50
75% 3.25 7.25 11.25
100% 4.00 8.00 12.00

Mandy Vogel mandy.vogel@googlemail.com 103/107
103/107

tapply()

• The function tapply() allows you to create tables (hence the
”t”) of the value of a function on subgroups defined by its
second argument, which can be a factor or a list of factors.
For example in the quine data frame, we can summarize
Days classify by Eth and Lrn as follows:

Input/Output
> tapply(mtcars$mpg,mtcars$cyl,mean)

4 6 8
26.66364 19.74286 15.10000
> tapply(mtcars$mpg,list(mtcars$cyl,mtcars$vs),mean)

0 1
4 26.00000 26.730
6 20.56667 19.125
8 15.10000 NA

Mandy Vogel mandy.vogel@googlemail.com 104/107
104/107

Table of Contents I
The big plan

R Intro

Packages

First Session

Citation/License

Objects

Combining Data Frames

Reading Data

The Apply Family
apply()
tapply()

Putting it all together

Mandy Vogel mandy.vogel@googlemail.com 105/107
105/107

Reading the Data

Input/Output
> tmp <- lapply(files,function(filename){
+ xx <- readLines(filename)
+ d1 <- read.table(text = xx[4:length(xx)],fill = T,header=T)
+ d2 <- read.table(text = xx[1:2],fill = T,header=T)
+ d1$subject <- rownames(d2)
+ d1$timepoint <- d2$subject
+ d1$date <- d2$timepoint
+ d1$time <- d2$date
+ d1$no.trials <- d2$no_trials
+ return(d1)
+ })
>
> system.time(result <- Reduce(rbind,tmp))
Fehler in match.names(clabs, names(xi)) :
Namen passen nicht zu den vorhergehenden Namen

Timing stopped at: 0.01 0 0.01

Mandy Vogel mandy.vogel@googlemail.com 106/107
106/107

Reading the Data

Input/Output
> tmp <- lapply(files,function(filename){
+ xx <- readLines(filename)
+ d1 <- read.table(text = xx[4:length(xx)],fill = T,header=T)
+ names(d1)[3] <- "trial"
+ d2 <- read.table(text = xx[1:2],fill = T,header=T)
+ d1$subject <- rownames(d2)
+ d1$timepoint <- d2$subject
+ d1$date <- d2$timepoint
+ d1$time <- d2$date
+ d1$no.trials <- d2$no_trials
+ return(d1)
+ })
>
> system.time(result <- Reduce(rbind,tmp))

User System verstrichen
57.812 0.017 57.765

Mandy Vogel mandy.vogel@googlemail.com 107/107
107/107

	The big plan
	R Intro
	Packages
	First Session
	Citation/License
	Objects
	Combining Data Frames
	Reading Data
	The Apply Family
	apply()
	tapply()

	Putting it all together

