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filter() and select()

> subframe <- select(result, measurement, first_pulse, subject)
> subframe <- filter(result, response_time < 5000) %>%
+ select(measurement, first_pulse, subject)
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group_by(), mutate() and summarize()

> sumframe <- group_by(result, subject) %>%
+ summarise(right.perc = sum(accuracy == 1)/n(),
+ mean.resp.time = mean(response_time, na.rm = T))
> head(sumframe)
Source: local data frame [6 x 3]

subject right.perc mean.resp.time
1 00436_39 0.6388889 7974.889
2 02411_39 0.7500000 7048.104
3 02544_39 0.6354167 9079.635
4 03858_39 0.7552083 9031.745
5 04517_39 0.7916667 8727.469
6 09458_39 0.7083333 7214.573
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ggplot

• creating a plot with ggplot involves
◦ create a ggplot object (ggplot())
◦ mapping qualities of the plot to variables aes()
◦ add layers consisting of a geometry geom_specify() and a

statistic (every geom owns a default statistic, so at this time we
do not care about statistics in ggplot)
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ggplot

Example

> p <- ggplot(mtcars, aes(wt, mpg))
> p + geom_point()
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Exercises
1. load the data and run the lines in the r file to create a new

variable containing the sex of the person in the video
(result$video, result$video.sex)

2. use dplyr to summarize your data per time point and per
person: calculate the 1. proportion of right answers and 2.
the mean response time per person and time point useing
group_by() and summarize()

3. now visualize the proportion dependent on time: use ggplot()
and geom_boxplot() map time to x and the proportion to y
using æs() inside of ggplot()

4. repeat the exercise, but this time group additional by the sex
of the person in the video

5. visualize for each of the trials (1-48) the mean time and the
percentage of right answers use facet_wrap to plot separate
plots for each time point
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Choosing the appropriate method

It is essential, therefore, that you can answer the following
questions:
• Which of your variables is the response variable?
• Which are the explanatory variables?
• Are the explanatory variables continuous or categorical, or a

mixture of both?
• What kind of response variable do you have: is it a

continuous measurement, a count, a proportion, a time at
death, or a category?
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Choosing the appropriate method

Explanatory Variables are
all continuous Regression
all categorical Analysis of variance (ANOVA)
both continuous and categorical Analysis of covariance (ANCOVA)
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Choosing the appropriate method

Response Variables
(a) Continuous Normal regression, ANOVA or ANCOVA
(b) Proportion Logistic regression
(c) Count Log-linear models
(d) Binary Binary logistic analysis
(e) Time at death Survival analysis

The best model is the model that produces the least
unexplained variation (the minimal residual deviance), subject to
the constraint that all the parameters in the model should be
statistically significant (or there are other reasons to keep them).
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Choosing the appropriate method

• It is very important to understand that there is not one
model;

• there will be a large number of different, more or less
plausible models that might be fitted to any given set of data.
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Maximum Likelihood

We define best in terms of maximum likelihood.
• given the data,
• and given our choice of model,
• what values of the parameters of that model make the

observed data most likely?
We judge the model on the basis how likely the data would be if
the model were correct.
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Ockham’s Razor

The principle is attributed to William of Ockham, who insisted
that, given a set of equally good explanations for a given
phenomenon, the correct explanation is the simplest
explanation. The most useful statement of the principle for
scientists is when you have two competing theories which make
exactly the same predictions, the one that is simpler is the
better.
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Ockham’s Razor

For statistical modelling, the principle of parsimony means that:
• models should have as few parameters as possible;
• linear models should be preferred to non-linear models;
• experiments relying on few assumptions should be preferred

to those relying on many;
• models should be pared down until they are minimal

adequate;
• simple explanations should be preferred to complex

explanations.
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Models

Fitting models to data is the central function of R. There are no
fixed rules and no absolutes. The object is to determine a
minimal adequate model from a large set of potential models.
• first we look at the null model
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The Null model

• Just one parameter,
the overall mean ȳ

• Fit: none;
SSE = SSY

• Degrees of freedom:
n − 1

• Explanatory power of
the model: none
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Adding Information

• model with 0 ≤ p′ ≤ p
parameters

• Fit: less than the
maximal model, but
not significantly so

• Degrees of freedom:
n − p′ − 1

• Explanatory power of

the model: r2 = SSR

SSY
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Adding Information

• model with 0 ≤ p′ ≤ p
parameters

• Fit: less than the
maximal model, but
not significantly so

• Degrees of freedom:
n − p′ − 1

• Explanatory power of

the model: r2 = SSA

SSY
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How to choose...

• models are representations of reality that should be both
accurate and convenient

• it is impossible to maximize a model’s realism, generality and
holism simultaneously

• the principle of parsimony is a vital tool in helping to choose
one model over another

• only include an explanatory variable in a model if it
significantly improved the fit of the model (or if there other
strong reasons)

• the fact that we went to the trouble of measuring something
dœs not mean we have to have it in our model
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ANOVA

• a technique we use when all explanatory variables are
categorical (factor)

• if there is one factor with three or more levels we use
one-way ANOVA (only two levels: t-test should be preferred,
would give exactly the same answer since with 2 levels
F = t2)

• for more factors there there is two-way, three-way anova
• central idea is to compare two or more means by comparing

variances
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The Garden Data

A data frame with 14 observations on 2 variables.

ozone: athmospheric ozone concentration
garden: garden id

1 2 3 4 5 6 7 8 9 10 11 12 13 14
ozone 9 7 6 8 5 11 9 11 9 6 10 8 8 12
garden a a a b a b b b b a b a a b

From: Michæl Crawley, The R-Book
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Total Sum of Squares
• we plot the values in order they are measured
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Total Sum of Squares

• there is a lot of scatter, indicating that the variance in ozone
is large

• to get a feel for the overall variance we plot the overall mean
(8.5) and indicate each of the residuals by a vertical line
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Total Sum of Squares
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Total Sum of Squares

• we refer to this overall variation as the total sum of squares,
SSY or TSS

SSY =
∑

(y − ȳ)2
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Total Sum of Squares

• in this case
SSY = 55.5
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Group Means

• now instead of fitting the overall mean, let us fit the
individual garden means

garden a b
mean 7 10
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Group Means

Garden A Garden B
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Group Means

• now we see that the mean ozone concentration is
substantially higher in garden B

• the aim of ANOVA is to determine
◦ whether it is significantly higher or
◦ whether this kind of difference could come by chance alone
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Error Sum of Squares

When the means are significantly different then the sum of
squares computed from the individual garden means will be
smaller than the sum of squares computed from the overall
mean.
• we define the new sum of squares as the error sum of

squares (error in the sense of ’residual’)

SSE =
∑

(ygardenA − ȳgardenA)2 +
∑

(ygardenB − ȳgardenB)2
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Total Sum of Squares

• in this case
SSE = 24.0
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Treatment Sum of Squares

• then the component of the variation that is explained by the
difference of the means is called the treatment sum of
squares SSA

• analysis of variance is based on the notion that we break
down the total sum of squares into useful and informative
components

SSY = SSE + SSA

where
◦ SSA = explained variation
◦ SSE = unexplained variation
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ANOVA table

Source Sum of squares Degrees of freedom Mean square F ratio
Garden 31.5 1 31.5 15.75
Error 24.0 12 s2 = 2.0
Total 55.5 13
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ANOVA

• now we need to test whether an F ratio of 15.75 is large or
small

• we can use a table or software package
• I use here software to calculate the cumulative probability

> 1 - pf(15.75,1,12)
[1] 0.001864103
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ANOVA
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ANOVA in R

• in R we use the lm() or the aov() command and
• the formula syntax a ∼b
• we assign this to an variable
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ANOVA in R

mm <- lm(ozone ~ garden, data=oneway)
mm

Call:
lm(formula = ozone ~ garden, data = oneway)

Coefficients:
(Intercept) gardenb

7 3
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ANOVA in R
> summary(mm)

Call:
lm(formula = ozone ~ garden, data = oneway)

Residuals:
Min 1Q Median 3Q Max
-2 -1 0 1 2

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 7.0000 0.5345 13.096 1.82e-08 ***
gardenb 3.0000 0.7559 3.969 0.00186 **
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 1.414 on 12 degrees of freedom
Multiple R-squared: 0.5676, Adjusted R-squared: 0.5315
F-statistic: 15.75 on 1 and 12 DF, p-value: 0.001864
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ANOVA in R

> anova(mm)
Analysis of Variance Table

Response: ozone
Df Sum Sq Mean Sq F value Pr(>F)

garden 1 31.5 31.5 15.75 0.001864 **
Residuals 12 24.0 2.0
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
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ANOVA in R I

> m2 <- aov(ozone ~ garden, data=oneway)
> m2
Call:

aov(formula = ozone ~ garden, data = oneway)

Terms:
garden Residuals

Sum of Squares 31.5 24.0
Deg. of Freedom 1 12

Residual standard error: 1.414214
Estimated effects may be unbalanced
> summary(m2)

Df Sum Sq Mean Sq F value Pr(>F)
garden 1 31.5 31.5 15.75 0.00186 **
Residuals 12 24.0 2.0
---
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ANOVA in R II
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
> summary.lm(m2)

Call:
aov(formula = ozone ~ garden, data = oneway)

Residuals:
Min 1Q Median 3Q Max
-2 -1 0 1 2

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 7.0000 0.5345 13.096 1.82e-08 ***
gardenb 3.0000 0.7559 3.969 0.00186 **
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 1.414 on 12 degrees of freedom
Multiple R-squared: 0.5676, Adjusted R-squared: 0.5315
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ANOVA in R III

F-statistic: 15.75 on 1 and 12 DF, p-value: 0.001864

> summary(m2)
Df Sum Sq Mean Sq F value Pr(>F)

garden 1 31.5 31.5 15.75 0.00186 **
Residuals 12 24.0 2.0
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
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ANOVA Assumptions

Central Assumptions
• independed, normal distributed errors
• equality of variances (homogeneity)
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Welch ANOVA I

• generalization of the Welch t-test
• tests whether the means of the outcome variables are

different across the factor levels
• assumes sufficiently large sample (greater than 10 times the

number of groups in the calculation, groups of size one are to
be excluded)

• sensitive to the existence of outliers (only few are allowed)
• the r command is oneway.test()
• non-parametric alternative kruskal.test()
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Exercises
1. Look at the help of the TukeyHSD function. What is its

purpose?
2. Execute the code of the example near the end of the help

page, interpret the results!
3. install and load the granovaGG package (a package for

visualization of ANOVAs), load the arousal data frame and
use the stack() command to bring the data in the long
form. Do a anova analysis. Is there a difference at least 2 of
the groups? If indicated do a post-hoc test.

4. Visualize your results
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Exercises - Solutions I
1. Look at the help of the TukeyHSD function. What is its

purpose?
2. Execute the code of the example near the end of the help

page, interpret the results!
3. install and load the granovaGG package (a package for

visualization of ANOVAs), load the arousal data frame and
use the stack() command to bring the data in the long
form. Do a anova analysis. Is there a difference at least 2 of
the groups? If indicated do a post-hoc test.
> require(granovaGG)
> data(arousal)
> datalong <- stack(arousal)
> m1 <- aov(values ~ ind, data = datalong)
> summary(m1)

Df Sum Sq Mean Sq F value Pr(>F)
ind 3 273.4 91.13 10.51 4.17e-05 ***
Residuals 36 312.3 8.68
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
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Exercises - Solutions II

> TukeyHSD(m1)
Tukey multiple comparisons of means

95% family-wise confidence level

Fit: aov(formula = values ~ ind, data = datalong)

$ind
diff lwr upr p adj

Drug.A.B-Drug.A 3.54 -0.007542384 7.0875424 0.0506601
Drug.B-Drug.A -0.45 -3.997542384 3.0975424 0.9860554
Placebo-Drug.A -3.84 -7.387542384 -0.2924576 0.0296168
Drug.B-Drug.A.B -3.99 -7.537542384 -0.4424576 0.0223986
Placebo-Drug.A.B -7.38 -10.927542384 -3.8324576 0.0000137
Placebo-Drug.B -3.39 -6.937542384 0.1575424 0.0654726

4. Visualize your results
> ggplot(datalong,aes(x=ind,y=values)) +
+ geom_boxplot()
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Exercises - Solutions III
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Exercises - Solutions IV
> granovagg.1w(datalong$values,group = datalong$ind)

By-group summary statistics for your input data (ordered by group means)
group group.mean trimmed.mean contrast variance standard.deviation

4 Placebo 20.43 20.30 -3.65 5.83 2.41
3 Drug.B 23.82 23.85 -0.26 7.50 2.74
1 Drug.A 24.27 24.45 0.19 7.89 2.81
2 Drug.A.B 27.81 27.52 3.73 13.49 3.67
group.size

4 10
3 10
1 10
2 10

Below is a linear model summary of your input data

Call:
lm(formula = score ~ group, data = owp$data)

Residuals:
Min 1Q Median 3Q Max

-5.910 -2.015 -0.075 1.885 6.290
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Exercises - Solutions V

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 24.2700 0.9314 26.057 < 2e-16 ***
groupDrug.A.B 3.5400 1.3172 2.688 0.01083 *
groupDrug.B -0.4500 1.3172 -0.342 0.73461
groupPlacebo -3.8400 1.3172 -2.915 0.00608 **
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 2.945 on 36 degrees of freedom
Multiple R-squared: 0.4668, Adjusted R-squared: 0.4223
F-statistic: 10.5 on 3 and 36 DF, p-value: 4.173e-05
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Exercises - Solutions VI
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The births data

A data frame with 500 observations on the following 8 variables.

id: Identity number for mother and baby.
bweight: Birth weight of baby.
lowbw: Indicator for birth weight less than 2500 g.

gestwks: Gestation period.
preterm: Indicator for gestation period less than 37 weeks.
matage: Maternal age.

hyp: Indicator for maternal hypertension.
sex: Sex of baby: Male, Female.

From: Michæl Hills and Bianca De Stavola (2002). A Short
Introduction to Stata 8 for Biostatistics, Timberlake Consultants
Ltd URL: http://www.timberlake.co.uk
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Variables in Models

The response variable must be numeric. Main types are
• Metric (a measurement with units); the easiest case, we will

begin with this
• Binary (two values code 0/1)
• Count (aggregated data)
• Failure (dœs the subject fail at end of follow up)
Explanatory variables can be
• Numeric
• Factor
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Metric Response, Numeric explanatory variable
Assuming that the relationship of bweight with gestwks is
roughly linear we can find the linear effect on bweight of a unit
increase in gestwks with

> m.1 <- lm(bweight ~ gestwks, data=births)

• lm() is the linear model function
• bweight ~ gestwks is the model formula
• m is a model object (containing all information about our

model), there are certain functions to extract these
information, e.g.:

> coef(m.1)
(Intercept) gestwks
-4489.1398 196.9726

One extra week of gestation produces an extra 197g of baby.
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Extractor functions
> summary(m.1)

Call:
lm(formula = bweight ~ gestwks, data = births)

Residuals:
Min 1Q Median 3Q Max

-1698.40 -280.14 -3.64 287.61 1382.24

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -4489.140 340.899 -13.17 <2e-16 ***
gestwks 196.973 8.788 22.41 <2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 449.7 on 488 degrees of freedom
(10 observations deleted due to missingness)

Multiple R-squared: 0.5073, Adjusted R-squared: 0.5062
F-statistic: 502.4 on 1 and 488 DF, p-value: < 2.2e-16
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Extractor functions

> coef(m.1)
(Intercept) gestwks
-4489.1398 196.9726
> confint(m.1)

2.5 % 97.5 %
(Intercept) -5158.9503 -3819.3293
gestwks 179.7054 214.2399
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Visualize Simple Linear Regression

• for visualization of simple linear regression ggplot can be
easily used

• with geom_smooth() it provides a layer for smoothing

Exercise:
• create a scatter plot using ggplot the independent variable on

the x-axis and the dependent variable on the y-axis
• add geom_smooth()
• what is the result?
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Visualize Simple Linear Regression

• the change the fitting method set the argument method of
geom_smooth()

• in our case set method to “lm”
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Other Useful Functions
The model object is a list of different elements each of which
can be accessed separately (see str(m) for the full list).
Other useful functions:
• print(m) simple display
• plot(m) produces various diagnostic plots based on residuals
• fitted(m) returns a vector of fitted values
• resid(m) returns a vector of residuals
• predict(m, newdata) predicts the response for new values

of the explanatory variables
• deviance(m) residual sum of squares
• df.residual(m) for the residual degrees of freedom
• vcov(m) variance-covariance matrix
code file for examples
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Explanatory Variable is a Factor

The effect of hyp (2-level factor) on bweight is obtained with

> m.aov <- lm(bweight ~ hyp, data=births)
> coef(m.aov)
(Intercept) hyphyper

3198.9042 -430.6959

Omitting the intercept gives the mean bweight at the two
levels of hyp

> m.aov2 <- lm(bweight ~ -1 + hyp, data=births)
> coef(m.aov2)
hypnormal hyphyper
3198.904 2768.208
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Explanatory Variable is a Factor
> summary(m.aov)

Call:
lm(formula = bweight ~ hyp, data = births)

Residuals:
Min 1Q Median 3Q Max

-2570.9 -286.4 69.1 383.9 1667.8

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 3198.90 29.96 106.768 < 2e-16 ***
hyphyper -430.70 78.95 -5.455 7.73e-08 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 619.8 on 498 degrees of freedom
Multiple R-squared: 0.05638, Adjusted R-squared: 0.05449
F-statistic: 29.76 on 1 and 498 DF, p-value: 7.729e-08
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Exercise

1. What is the appropriate plot to visualize the effect of hyp?
2. What is the most common test to test these effect?
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A Multivariable Model

The joint effect of hyp and gestwks on bweight is obtained
with

> m.3 <- lm(bweight ~ hyp + gestwks, data=births)

Estimate
(Intercept) -4285.002
hyphyper -143.675 (level 2 vs. level 1)
gestwks 192.238 (increase per week)

The effect of hyp is attenuated (from −430.7 to −143.7 ). This
suggests that much of the effect of hypertension on birth
weight is mediated through a shorter gestation period.
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A Model With Both gestwks and hyp

The effect of gestwks is the slope of the lines A and B (assumed to
be the same). The effect of hyp ist the vertical distance between
them.
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Interaction Models in lm

To specify an interaction term in lm, change the model formula
from

Input
> m.3 <- lm(bweight ~ hyp + gestwks, data=births)

to

> m.5 <- lm(bweight ~ hyp + gestwks + hyp:gestwks, data=births)

or shorter

> m.5 <- lm(bweight ~ hyp * gestwks, data=births)
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Interaction Between gestwks and hyp
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Interactions Models in lm

Output
Estimate

(Intercept) -3960.82
hyphyper -1332.66 (level 2 vs level 1 - intercept)
gestwks 183.91
hyphyper:gestwks 31.39 (level 2 vs level 1 - slope)

Now the effect of hyp is more difficult to explain, because it is
not constant. The effect of −1332 is valid on a hypothetical
gestational age of 0. Which dœsn’t make sense. You could scale
the gestwks variable.

> births$gwsc <- births$gestwks-40
> m <- lm(bweight ~ hyp * gwsc, data=births)
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Interactions Models in lm

Input/Output
Estimate

(Intercept) 3395.60329
hyphyper -77.25215 (level 2 vs level 1 - intercept)
gwsc 183.91048
hyphyper:gwsc 31.38510 (level 2 vs level 1 - slope)
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How much is explained? - aov
In the Null-Model we have seen that SSE = SSY (the error
sum of squares is equal to the total sum of squares in y) and
therefore the Null-Model explaines nothing of the overall
variance. So the fraction how much of the overall variance is
explained by our model regarding to the overall variance is a
first measure for the fit of the model...
• the simple model with one explanatory variable
> m <- lm(bweight ~ gestwks, data=births)
> anova(m)
Analysis of Variance Table

Response: bweight
Df Sum Sq Mean Sq F value Pr(>F)

gestwks 1 101603845 101603845 502.36 < 2.2e-16 ***
Residuals 488 98698698 202251
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
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How much is explained? - aov

• in the second column of the summary we see the regression
sum of squares ( SSR ) in the first line and in the second line
the error sum of squares (SSE ). So the total sum of
squares ( SSY - a measure for the overall variation) is the
sum of both:
> sum(anova(m)$Sum)
[1] 200302543

• and the fraction is
> anova(m)$Sum[1]/sum(anova(m)$Sum)
[1] 0.5072519
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How much is explained? - aov
• this is r-squared
> summary(m)$r.squared
[1] 0.5072519

• which you can extract from the summary of the model
> summary(m)
Call:
lm(formula = bweight ~ gestwks, data = births)
Residuals:

Min 1Q Median 3Q Max
-1698.40 -280.14 -3.64 287.61 1382.24
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) -4489.140 340.899 -13.17 <2e-16 ***
gestwks 196.973 8.788 22.41 <2e-16 ***

Residual standard error: 449.7 on 488 degrees of freedom
(10 observations deleted due to missingness)

Multiple R-squared: 0.5073, Adjusted R-squared: 0.5062
F-statistic: 502.4 on 1 and 488 DF, p-value: < 2.2e-16
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Exercise
The dataset teengamb is part of the faraway package and
concerns a study of teenage gambling in Britain. Fit a regression
model with the expenditure on gambling as the response and
the sex, status, income and verbal score as predictors.
Present the output.
(a) What percentage of variation in the response is explained by

these predictors?
(b) Which observation has the largest (positive) residual? Give

the case number.
(c) Compute the mean and median of the residuals.
(d) Compute the correlation of the residuals with the fitted

values.
(e) Compute the correlation of the residuals with the income.
(f) For all other predictors held constant, what would be the

difference in predicted expenditure on gambling for a male
compared to a female?
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Beyond Linear Models

• linear models are central to the practice of statistics
• the standard linear model cannot handle non-normal

responses, such as counts or proportions. This motivates the
development of generalized linear models that can represent
categorical, binary and other response types.
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Beyond Linear Models

• Some data has a grouped, nested or hierarchical structure.
Repeated measures, longitudinal and multilevel data consist
of several observations taken on the same individual or
group. This induces a correlation structure in the error.
mixed effect models allow the modeling of such data.

• non-parametric regression models: Methods such as additive
models, trees and neural networks allow a more flexible
regression modeling of the response that combine the
predictors in a nonparametric manner.
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Generalized Linear Models

Linear modeling assumes constant variance and normally
distributed errors. Certain kinds of respond variables lack these
constraints. GLMs are excellent at dealing with it.

Input/Output
> m1 <- lm(bweight ~ hyp, data=births)
> m2 <- glm(bweight ~ hyp, family=gaussian, data=births)

give the same answer. The model formula is the same for both,
but for glm() it is necessary to specify the family of likelihoods
which will be used to fit the model.
The glm() function allows us to fit other models including
logistic regression and Poisson regression.
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Beyond Linear Models

• We begin with a binary response variable:
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Bernoulli model

• f(y; p) = py(1 − p)1−y

• it is modelled with a logit as canonical link

η = log( p

1 − p
)

• i.e. our linear model looks like

η = log( p

1 − p
) = β0 + β1x1 + · · · + βnxn + ε

with a binomial error structure
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Exercise

• We need data. So...
• The excel file data.xlsx contains the worksheets mother and

child containing respective parts of the births data set. Use
the read_excel() command to read both data sets and use
merge() to join them

• Hints:
◦ the read_excel() function is a part of the readxl package
◦ check which columns are contained in both data frames and use

them for merging
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Data Structure
The structure of the data should be of the following form:

Input/Output
> str(births)
'data.frame': 500 obs. of 8 variables:
$ id : num 100 101 102 103 104 105 106 107 108 109 ...
$ preterm: chr "normal" "normal" "normal" "normal" ...
$ gestwks: num 39.8 39 38.1 39.5 39.5 ...
$ hyp : chr "normal" "normal" "normal" "normal" ...
$ matage : num 33 32 33 38 40 29 32 40 41 39 ...
$ bweight: num 3576 3784 2796 3226 3138 ...
$ lowbw : chr "normal" "normal" "normal" "normal" ...
$ sex : chr "F" "F" "F" "F" ...

Data from: Michæl Hills and Bianca De Stavola (2002). A Short Introduction
to Stata 8 for Biostatistics, Timberlake Consultants Ltd URL:
http://www.timberlake.co.uk
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Binary Response Variable

Many statistical problems involve binary response variables. For
example, we often classify individuals as:
• dead or alive,
• occupied or empty,
• healthy or diseased,
• wilted or turgid,
• male or female,
• literate or illiterate,
• mature or immature,
• solvent or insolvent, or
• employed or unemployed.
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Binary Response Variable

Question
Which variable in the births data set is (most) suitable to use as
binary response given this data set? Why?
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Binary Response Variable

In order to work with correct coded variables, we transform hyp
and lowbw to categorical variables, and define normal as
reference level for both of them

Input/Output
> summary(births$hyp)

Length Class Mode
500 character character

> births$hyp <- factor(births$hyp,levels = c("normal","hyper"))
> summary(births$hyp)

normal hyper
428 72

> summary(births$lowbw)
Length Class Mode
500 character character

> births$lowbw <- factor(births$lowbw,levels = c("normal","low"))
> summary(births$lowbw)

normal low
440 60
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Predicting Low Birth Weight

• Now we are more interested in predicting birth weight under
2500g (lowbw).

• This requires a model where the outcome is not metric, but
binary.

• For a binary response we use a glm() with a binomial family.
• the binomial family uses a logit link as default
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Predicting Low Birth Weight
How it looks in R:

Input/Output
> m <- glm(lowbw ~ hyp, family=binomial, data=births)
> summary(m)
Call:
glm(formula = lowbw ~ hyp, family = binomial, data = births)

Deviance Residuals:
Min 1Q Median 3Q Max

-0.8067 -0.4430 -0.4430 -0.4430 2.1773

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.2721 0.1661 -13.682 < 2e-16 ***
hyphyper 1.3166 0.3111 4.232 2.32e-05 ***
---

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 366.92 on 499 degrees of freedom
Residual deviance: 350.84 on 498 degrees of freedom
AIC: 354.84
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Predicting Low Birth Weight

What it looks like as a math formula:

log
(

Pr(lowbw)
1 − Pr(lowbw)

)
= β0 + β1 · hyp + ε
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Interpreting the Cœfficients

• While using a binomial family R uses a logit as link function.
• Therefore the returned estimates are log odds (Intercept) or

log odds ratios (for the parameters).
• The arm package contains a function invlogit() which dœs

invert the logit function.
• Alternatively you can use the formula

logit−1 = exp(x)
1 + exp x
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Interpreting the Cœfficients
• Our example is a simple analysis of variance.
• Our model here is

Pr(lowbw) = logit−1(−2.2721 + 1.3166 · hyp)

• We have two levels of our predictor variable hyp: normal and
hyp.

• For the reference level normal hyp = 0
• in this case we get

Pr(lowbw) = logit−1(−2.2721 + 1.3166 · 0) = logit−1(−2.2721)

which is a log odds as mentioned before, so

Input/Output
> invlogit(coef(m)[1])
(Intercept)
0.09345794
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Interpreting the Cœfficients

• The result is the probability of low birth weight within the
group of moms with normal blood pressure. We can check
this by using table:

Input/Output
> table(births$lowbw,births$hyp)

normal hyper
normal 388 52
low 40 20

> 40/(388+40)
[1] 0.09345794
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Interpreting the Cœfficients

• for the level hyp (i.e. hyp = 1) we get a difference of 1.3166
on the logit scale

Pr(lowbw) = logit−1(−2.2721 + 1.3166 · 1)

• which turns out to be

Input/Output
> invlogit(coef(m)[1]+coef(m)[2])
(Intercept)

0.2777778

• so the probability for low birth weight is 27.8% in for moms
with high blood pressure
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Understanding the Cœfficients
• in this simple case, the response variable gives the

probability for low birth weight for each of the two groups of
moms (with and without high blood pressure)

• you can get the result also using (a) a proportion test:

> prop.test(c(20,40),c(72,428))

2-sample test for equality of proportions with continuity correction

data: c(20, 40) out of c(72, 428)
X-squared = 18.121, df = 1, p-value = 2.073e-05
alternative hypothesis: two.sided
95 percent confidence interval:
0.06913673 0.29950294
sample estimates:

prop 1 prop 2
0.27777778 0.09345794
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Understanding the Cœfficients

• or (b) a χ2-test:

Input/Output
> chisq.test(table(births$lowbw,births$hyp))

Pearson's Chi-squared test with Yates' continuity correction

data: table(births$lowbw, births$hyp)
X-squared = 18.121, df = 1, p-value = 2.073e-05
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Understanding the Cœfficients

• a hand made plot
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Understanding the Cœfficients
• and one effect plot (effects package)

Input
> plot(Effect("hyp",m))
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Understanding the Cœfficients

• btw: Effect() gives you the probabilities without using a
explicit transformation

Input/Output
> Effect("hyp",m)

hyp effect
hyp

normal hyper
0.09345794 0.27777778
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Controlling

Controlling the effect of hyp on lowbw for sex

Input/Output
> m2 <- glm(lowbw ~ hyp+sex, family=binomial, data=births)

Estimate StdErr Pr(>|z|)
(Intercept) -2.5088 0.2331 < 2e-16 ***
hyphyper 1.3625 0.3144 1.47e-05 *** hyp controlled for sex
sexF 0.4473 0.2843 0.116 sex controlled for hyp

When you control for a variable you are assuming that any
interaction can be ignored.
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Interaction (effect modification)

• We add an interaction term to the model

Input/Output
> m3 <- glm(lowbw ~ hyp + sex + hyp:sex,
+ family=binomial, data=births) # or shorter
> m3 <- glm(lowbw ~ hyp*sex, family=binomial,

data=births)
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Interaction (effect modification)
• we have four estimates now, and to get the effects in terms

of probabilites we need to type

Input/Output
> m3 <- glm(lowbw ~ hyp*sex, family=binomial, data=births)
> summary(m3)

Call:
glm(formula = lowbw ~ hyp * sex, family = binomial, data = births)

Deviance Residuals:
Min 1Q Median 3Q Max

-0.8090 -0.5074 -0.3749 -0.3749 2.3195

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.6198 0.2674 -9.796 < 2e-16 ***
hyphyper 1.6707 0.4326 3.862 0.000112 ***
sexF 0.6347 0.3421 1.855 0.063535 .
hyphyper:sexF -0.6507 0.6366 -1.022 0.306694
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 366.92 on 499 degrees of freedom
Residual deviance: 347.29 on 496 degrees of freedom
AIC: 355.29

Number of Fisher Scoring iterations: 5

Mandy Vogel mandy.vogel@googlemail.com 102/168
102/168



Interaction Cœfficients

Input/Output
> invlogit(coef(m3)[1])

(Intercept)
0.0678733

> invlogit(coef(m3)[1] + coef(m3)[2])
(Intercept)
0.2790698

> invlogit(coef(m3)[1] + coef(m3)[3])
(Intercept)
0.1207729

> invlogit(coef(m3)[1] + coef(m3)[2] + coef(m3)[3] + coef(m3)[4])
(Intercept)
0.2758621
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Exercises

You can calculate the effects by hand and using the
invlogit() function, but this becomes a little annoying, the
allEffects() function provides a nicer way to do the same.
• now you have three models, use the Effects(),
allEffects() and the plot() function to get the following
information:
1. the estimated probability for moms with hypertension to get a

baby with low birth weight for all three models
2. is their a difference in effects between boys and girls? Which

model can answer this question?
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Testing for Interaction
• Do we need to keep the interaction term?

Input/Output
> m2 <- glm(lowbw ~ hyp+sex, family=binomial,
+ data=births)
> m3 <- glm(lowbw ~ hyp*sex, family=binomial,
+ data=births)
> anova(m2,m3,test="Chisq")

Resid. Df Resid. Dev Df Deviance Pr(>Chi)
1 497 348.34
2 496 347.29 1 1.0561 0.3041

• The anova function conducts an analysis of variance – a test
of significance between two nested models.

• The interaction term dœs not improve the fit - so we leave it
out and keep the simpler model.
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Stratified Effects

• When there is a strong interaction it may be best to report
stratified effects.

• Omitting the main effect of hyp in an interaction model gives
us the effect of hyp within strata of sex.
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Stratified Effects
Input/Output
> m4 <- glm(lowbw ~ sex + sex:hyp, family=binomial, data=births)
> summary(m4)

Call:
glm(formula = lowbw ~ sex + sex:hyp, family = binomial, data = births)

Deviance Residuals:
Min 1Q Median 3Q Max

-0.8090 -0.5074 -0.3749 -0.3749 2.3195

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.6198 0.2674 -9.796 < 2e-16 ***
sexF 0.6347 0.3421 1.855 0.063535 .
sexM:hyphyper 1.6707 0.4326 3.862 0.000112 ***
sexF:hyphyper 1.0200 0.4670 2.184 0.028952 *
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 366.92 on 499 degrees of freedom
Residual deviance: 347.29 on 496 degrees of freedom
AIC: 355.29

Number of Fisher Scoring iterations: 5
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Stratified Effects

A slightly shorter way to define the same model:

Input/Output
> m4 <- glm(lowbw ~ sex/hyp, family=binomial, data=births)
> m4

Call: glm(formula = lowbw ~ sex/hyp, family = binomial, data = births)

Coefficients:
(Intercept) sexF sexM:hyphyper sexF:hyphyper

-2.6198 0.6347 1.6707 1.0200

Degrees of Freedom: 499 Total (i.e. Null); 496 Residual
Null Deviance: 366.9
Residual Deviance: 347.3 AIC: 355.3
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Exercise

• compare the effects in m3 and m4
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Understanding the Cœfficients

> ftable(births$hyp,
+ births$sex,
+ births$lowbw)

normal low

normal M 206 15
F 182 25

hyper M 31 12
F 21 8

## male/normal bp
> 15/(206+15)
[1] 0.0678733
## female/normal bp
> 25/(25+182)
[1] 0.1207729
## male/high bp
> 12/(12+31)
[1] 0.2790698
## female/high bp
> 8/(8+21)
[1] 0.2758621

Mandy Vogel mandy.vogel@googlemail.com 110/168
110/168



Simple Logistic Regression

• now we model the probability of low birth weight dependent
on gestational age

• so the model in R is

Input
> m5 <- glm(lowbw ~ gestwks, family=binomial, data=births)

• and as math formula

log
(

Pr(lowbw)
1 − Pr(lowbw)

)
= β0 + β1 · gestwks + ε
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Simple Logistic Regression
• where the output look similar to the output above

Input/Output
> summary(m5)

Call:
glm(formula = lowbw ~ gestwks, family = binomial, data = births)

Deviance Residuals:
Min 1Q Median 3Q Max

-2.0873 -0.3623 -0.2223 -0.1369 2.9753

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 31.8477 4.0574 7.849 4.18e-15 ***
gestwks -0.8965 0.1084 -8.272 < 2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 360.38 on 489 degrees of freedom
Residual deviance: 205.75 on 488 degrees of freedom

(10 observations deleted due to missingness)
AIC: 209.75

Number of Fisher Scoring iterations: 6
> m5 <- glm(lowbw ~ gestwks, family=binomial, data=births)
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Understanding the Cœfficients
• this relationship is described by

Pr(lowbw) = logit−1(31.8477 + −0.8965 · gestwks)

• the intercept

Input/Output
> invlogit(coef(m)[1])
(Intercept)

1

is interpretable as the probability for a low birth weight at a
hypothetical gestational age of 0 (which makes no sense
because it lies outside the range of gestational ages in our
data)

• the parameter for gestwks describes how fast the probability
decreases with increasing gestation age
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Understanding the Cœfficients

Pr(lowbw) = logit−1(31.8477 + −0.8965 · gestwks)

• the cœfficient for gestwks is best interpretable if we use it
as argument to the exponential function

Input/Output
> exp(coef(m5)[2])

gestwks
0.4080114

this way it is interpretable as odds ratio for low birth weight
for a difference of 1 week of gestational age
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Exercise

1. here is a example for the Effects() command for regression

Input/Output
> Effect("gestwks",m5)

gestwks effect
gestwks

25 30 35 40
0.99992022 0.99299324 0.61574996 0.01779725
> Effect("gestwks",m5,xlevels = list(gestwks = c(20,30,40)))

gestwks effect
gestwks

20 30 40
0.99999910 0.99299324 0.01779725

2. use the command to gain the estimated probability of low
birth weight for a gestational age of 27 and 36 weeks

Mandy Vogel mandy.vogel@googlemail.com 115/168
115/168



ggplot() and glm()

• ggplot2 knows also glms
• unfortunately the y-variable needs to be coded in 0s and 1s,

but we can do this on the fly with as.numeric()

Input
> require(ggplot2)
> ggplot(births,aes(x = gestwks, y = as.numeric(lowbw)-1)) +
+ geom_smooth(method = "glm", family = "binomial",se = F,size = 2) +
+ geom_point(shape="|") ## adds actual values
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ggplot() and glm()

Mandy Vogel mandy.vogel@googlemail.com 117/168
117/168



Exercise

Take the code producing the graph
1. try to change the axis titles (xlab() and ylab())
2. add a title (ggtitle())
3. change the colour of the function to black, set se = T
4. change the colour of the points to red for the low birth

weight and green for the one with normal birth weight
5. change the position of the legend; place it somewhere near

the upper right corner inside the plotting area
(legend.position)
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The Challenger Disaster Example

In January 1986, the space shuttle Challenger exploded shortly
after launch. An investigation was launched into the cause of
the crash and attention focused on the rubber O-ring seals in
the rocket boosters. At lower temperatures, rubber becomes
more brittle and is a less effective sealant. At the time of the
launch, the temperature was 31◦F. Could the failure of the
O-rings have been predicted? In the 23 previous shuttle
missions for which data exists, some evidence of damage due
to blow by and erosion was recorded on some O-rings. Each
shuttle had two boosters, each with three O-rings. For each
mission, we know the number of O-rings out of six showing
some damage and the launch temperature.(faraway)
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The Challenger Disaster Example
• the data are given in the data frame orings in the faraway

package
• after loading we have a look at the first six lines
> library(faraway)
> data(orings)
> head(orings)
temp damage

1 53 5
2 57 1
3 58 1
4 63 1
5 66 0
6 67 0

• we see that every shuttle mission has its own row (but not
every O-ring)
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The Challenger Disaster Example

• that is not a problem: one way of defining a binary response
variable in a glm is to form a two-column matrix with the first
column representing the number of “successes” y and the
second column the number of “failures” n–y.
> m <- glm(cbind(damage,6-damage) ~ temp,
+ family=binomial, orings)

• we see that every shuttle mission has its own row (but not
every O-ring)
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The Challenger Disaster Example
• the output looks familiar:

> summary(m)
Call:
glm(formula = cbind(damage, 6 - damage) ~ temp,

family = binomial, data = orings)
Deviance Residuals:

Min 1Q Median 3Q Max
-0.9529 -0.7345 -0.4393 -0.2079 1.9565
Coefficients:

Estimate Std. Error z value Pr(>|z|)
(Intercept) 11.66299 3.29626 3.538 0.000403 ***
temp -0.21623 0.05318 -4.066 4.78e-05 ***
(Dispersion parameter for binomial family taken to be 1)

Null deviance: 38.898 on 22 degrees of freedom
Residual deviance: 16.912 on 21 degrees of freedom
AIC: 33.675

• remember, the response is a probability. Therefore our model describes
the probability of a damaged O-ring depending on the temperature
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Understanding the Cœfficients

• this relationship is described by

Pr(damage) = logit−1(11.66299 + −0.21623 · temp)

• the intercept
> invlogit(coef(m)[1])
(Intercept)
0.9999914

is interpretable as the probability for a damaged O-ring at a
temperature of 0◦F

• the parameter for temperature describes how fast the
probability decreases with increasing temperature
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Understanding the Cœfficients

> tf <- 20:100
> pd <- predict(m,newdata=list(temp=tf), type="response")
> plot(tf,pd,type="l",
+ xlab=expression(paste("temperature (",degree,"F)",sep=" ")),
+ ylab="probability of damage")
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Understanding the Cœfficients

and the same plot made with ggplot (incl. adding a table)
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Parasite Infection Example
• the binary response variable is parasite infection (infected or

not)
• the explanatory variables are weight and age (continuous)
• and sex (categorical)
• we want to investigate if there is a different effect of age for

each of the sexes on the outcome variable

> infection <- read.table("infection.txt",header=T)
> summary(infection)

infected age sex
Min. :0.000 Min. : 2.00 Min. :0.000
1st Qu.:0.000 1st Qu.: 46.00 1st Qu.:0.000
Median :0.000 Median : 84.50 Median :1.000
Mean :0.324 Mean : 93.69 Mean :0.514
3rd Qu.:1.000 3rd Qu.:139.25 3rd Qu.:1.000
Max. :1.000 Max. :200.00 Max. :1.000
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Parasite Infection Example
> m <- glm(infected~age*sex,family=binomial,
+ data=infection)
> summary(m)
Call:
glm(formula = infected ~ age * sex, family = binomial,

data = infection)
Deviance Residuals:

Min 1Q Median 3Q Max
-2.0411 -0.7307 -0.4363 0.6632 2.3215
Coefficients:

Estimate Std. Error z value Pr(>|z|)
(Intercept) -3.000513 0.413639 -7.254 4.05e-13 ***
age 0.015657 0.003176 4.929 8.25e-07 ***
sex 0.116664 0.553956 0.211 0.8332
age:sex 0.011050 0.004612 2.396 0.0166 *

(Dispersion parameter for binomial family taken to be 1)
Null deviance: 629.85 on 499 degrees of freedom

Residual deviance: 477.61 on 496 degrees of freedom
AIC: 485.61
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Parasite Infection Example

• so for male at a age of 0 there is a probability of
> invlogit(coef(m)[1])
(Intercept)
0.04740269

• for females is the probability at age 0
> invlogit(coef(m)[1]+coef(m)[3])
(Intercept)
0.05295775
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Parasite Infection Example

• so what about the slope?
• for males the underlying model is the following

Pr(infection) = logit−1(−3.000513 + 0.015657 · age)

• for females the slope is almost twice as high

Pr(infection) = logit−1(−2.883849 + 0.02670685 · age)

• we can compare them by looking at the age where the
probability to be infected is 50%
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Parasite Infection Example

• this is the case when −3.000513 + 0.015657 · age = 0
respectively −2.883849 + 0.02670685 · age = 0; you can do it
by hand or use R
> ## male
> solve(0.015657,3.000513)
[1] 191.6404
> ## female
> solve(0.02670685,2.883849,)
[1] 107.9816

• solve() solves systems of linear equations in the form
A*x=b, where A is the matrix of cœfficients and b are the
(negative) intercepts, here we have the special case with just
one equation
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Parasite Infection Example
• you can also use the allEffects() function (part of the
effects package), which give you the probabilities for being
infected on several ages for both sexes
> allEffects(m)
model: infected ~ age * sex

age*sex effect
sex

age 0 1
2 0.04883687 0.05570148
24 0.06756215 0.09596497
46 0.09276694 0.16038932
68 0.12610300 0.25582483
90 0.16918450 0.38219715
112 0.22322468 0.52680374
134 0.28853152 0.66704908
156 0.36399154 0.78286130
178 0.44679328 0.86645480
200 0.53265591 0.92110968

Mandy Vogel mandy.vogel@googlemail.com 131/168
131/168



Parasite Infection Example
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Count Data

• a great deal of the data collected is in the form of counts
• for example:

◦ number of individuals that died
◦ number of firms going
◦ bankrupt, the number of days of frost,
◦ the number of red blood cells on a microscope slide, and the
◦ number of craters in a sector of lunar landscape

• with count data, the number 0 often appears as a value of
the response (zero inflated data)
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Count Data

• we must consider a different cases in dealing with data on
frequencies: cases
◦ where we count how many times something happened, but we

have no way of knowing how often it did not happen (e.g.
lightning strikes, bankruptcies, deaths, births).

◦ count data on proportions, where we know the number doing a
particular thing, but also the number not doing that thing (e.g.
the proportion dying, sex ratios at birth, proportions of different
groups responding to a questionnaire)
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A Poisson Regression
• The following example has a count (the number of reported

cancer cases per year per clinic) as the response variable
• and a single continuous explanatory variable (the distance

from a nuclear plant to the clinic in km).
• The question is whether or not proximity to the reactor

affects the number of cancer cases.
> cancer <- read.table("clusters.txt",header=T)
> head(cancer)
Cancers Distance

1 0 11.46952
2 0 66.55395
3 0 47.46230
4 0 48.38129
5 0 73.76534
6 0 70.57555
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Count Data

• look at a barplot (cut the Distance variable in ten classes)
and a scatter plot
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Count Data
• There seems to be a downward trend in cancer cases with

distance. But is the trend significant?
> m <- glm(Cancers~Distance,family=poisson,data=cancer)
> summary(m)
Call:
glm(formula = Cancers ~ Distance, family = poisson,

data = cancer)

Deviance Residuals:
Min 1Q Median 3Q Max

-1.5504 -1.3491 -1.1553 0.3877 3.1304
Coefficients:

Estimate Std. Error z value Pr(>|z|)
(Intercept) 0.186865 0.188728 0.990 0.3221
Distance -0.006138 0.003667 -1.674 0.0941 .
(Dispersion parameter for poisson family taken to be 1)

Null deviance: 149.48 on 93 degrees of freedom
Residual deviance: 146.64 on 92 degrees of freedom
AIC: 262.41
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Count Data

• The trend dœs not look to be significant, but look at the
residual deviance:

• It is assumed that this is the same as the residual degrees of
freedom (because the errors are supposed to be Poisson
distributed)

• this indicates that we have overdispersion (extra, unexplained
variation in the response).

• we compensate for the overdispersion by refitting the model
using quasi-Poisson rather than Poisson errors
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Count Data
• the refitted model

> m <- glm(Cancers~Distance,family=quasipoisson,data=cancer)
> summary(m)
Call:
glm(formula = Cancers ~ Distance,

family = quasipoisson, data = cancer)
Deviance Residuals:

Min 1Q Median 3Q Max
-1.5504 -1.3491 -1.1553 0.3877 3.1304

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.186865 0.235364 0.794 0.429
Distance -0.006138 0.004573 -1.342 0.183

(Dispersion parameter for quasipoisson family
taken to be 1.555271)

Null deviance: 149.48 on 93 degrees of freedom
Residual deviance: 146.64 on 92 degrees of freedom
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Interpreting the Cœfficients

• the estimates remained the same, but the p-vals changed
• so there is no compelling evidence to support the existence

of a trend in cancer incidence with distance from the nuclear
plant (this is a completely made up example, neither
considering varying population nor clinic density)

Mandy Vogel mandy.vogel@googlemail.com 141/168
141/168



Interpreting the Cœfficients

• if you use glms with Poisson errors, the default link function
is log

• so the parameter estimates and the predictions from the
model (the ‘linear predictor’) are in logs, and need to be
antilogged

• so we have the following following formula for our model

count = exp (0.186865 − 0.006138 · Distance)

• antilog the intercept:
> exp(coef(m)[1])

(Intercept)
1.205464

• get 1.2 expected cases at a distance of zero
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Interpreting the Cœfficients

• the slope for Distance is a bit easier to interpret than with a
logit link
> exp(coef(m)[2])
Distance

0.9938805
means that for every additional km distance you get 0.006
less cancer cases (it is nicer to say for every 10 km the
expected count of cancer cases decreases by 6%)
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Interpreting the Cœfficients

• again, the effects package is very helpful to give an
overview
> allEffects(m,xlevels=list(Distance=seq(0,100,by=10))
+ )
model: Cancers ~ Distance

Distance effect
Distance

0 10 20 30
1.2054642 1.1336940 1.0661968 1.0027182

40 50 60 70
0.9430189 0.8868740 0.8340718 0.7844133

80 90 100
0.7377114 0.6937900 0.6524835
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Interpreting the Cœfficients
• now the effect plot and the (non-significant) fitted line can be

drawn
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Interpreting the Cœfficients
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Anova with Count Data

• next example the response variable is a count of infected
blood cells per mm2 on microscope slides prepared from
randomly selected individuals

• explanatory variables are smoker (logical, yes or no)
• and body mass score (three levels, normal, overweight, obese)
• so we fit the following model (including the interaction term)
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Anova with Count Data
> m <- glm(cells~smoker*weight,family=poisson,data=cells)
> summary(m)
Call:
glm(formula = cells ~ smoker * weight, family = poisson, data = cells)
Deviance Residuals:

Min 1Q Median 3Q Max
-2.6511 -1.1742 -0.9148 0.5533 3.6436
Coefficients: Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.8712 0.1302 -6.692 2.20e-11 ***
smokerTRUE 0.8224 0.1833 4.486 7.27e-06 ***
weightobese 0.4993 0.1671 2.987 0.002817 **
weightover 0.2618 0.1866 1.404 0.160465
smokerTRUE:weightobese 0.8063 0.2296 3.511 0.000446 ***
smokerTRUE:weightover 0.4935 0.2546 1.939 0.052548 .

(Dispersion parameter for poisson family taken to be 1)
Null deviance: 1052.95 on 510 degrees of freedom

Residual deviance: 792.85 on 505 degrees of freedom
AIC: 1318.5
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Anova with Count Data

• again we see overdispersion (residual deviance > degrees of
freedom)

• we compensate by refitting the model using quasi-Poisson
errors
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Anova with Count Data
> m <- glm(cells~smoker*weight,family=quasipoisson,data=cells)
> summary(m)
Call:
glm(formula = cells ~ smoker * weight, family = quasipoisson,

data = cells)
Deviance Residuals:

Min 1Q Median 3Q Max
-2.6511 -1.1742 -0.9148 0.5533 3.6436
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.8712 0.1760 -4.950 1.01e-06 ***
smokerTRUE 0.8224 0.2479 3.318 0.000973 ***
weightobese 0.4993 0.2260 2.209 0.027598 *
weightover 0.2618 0.2522 1.038 0.299723
smokerTRUE:weightobese 0.8063 0.3105 2.597 0.009675 **
smokerTRUE:weightover 0.4935 0.3442 1.434 0.152226

(Dispersion parameter for quasipoisson family taken to be 1.827927)
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Interpreting the Cœfficients
• remember poisson has log as link so

> exp(coef(m)[1])
(Intercept)
0.4184397

is the expected count of infected blood cells for a normal weighted
non-smoker

• all the other estimates are interpretable as factors (because of the log
link!)

• so a smoker has

> exp(coef(m)[2])
smokerTRUE
2.276029

more than twice as many infected cells which is

> exp(coef(m)[1])*exp(coef(m)[2])
(Intercept)

0.952381
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Interpreting the Cœfficients

• unfortunately effect() dœs not work on our model object,
so we use tapply() (for simple models a good alternative, as
soon as I remove an interaction term, or nested effects this
dœs not work anymore)
> with(cells,tapply(cells,list(smoker,weight),mean))

normal obese over
FALSE 0.4184397 0.6893939 0.5436893
TRUE 0.9523810 3.5142857 2.0270270
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Interpreting the Cœfficients
• for visualization we use barplot with errorbars indicating the

standard error
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Ancova with Count Data
• last example: analysis of covariance
• response is a count of the number of plant species on plots
• that have different biomass (a continuous explanatory

variable) and
• different soil pH (a categorical variable with three levels: high,

mid and low)
> species<-read.table("species.txt",header=T)
> head(species)

pH Biomass Species
1 high 0.4692972 30
2 high 1.7308704 39
3 high 2.0897785 44
4 high 3.9257871 35
5 high 4.3667927 25
6 high 5.4819747 29
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Ancova with Count Data

• this time we begin with a scatter plot
p <- ggplot(species,aes(x=Biomass,y=Species,
+ shape=pH,colour=pH)) +

geom_point()
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Ancova with Count Data

• we see: number of species declines with Biomass
• soil pH has a big effect on Species
• Dœs the slope of the relationship between Species and

Biomass depend on pH?
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Ancova with Count Data

• define the model and look at the summary
> m <- glm(Species~Biomass*pH,family=poisson,data=species)
> summary(m)
...
Coefficients:

Estimate Std. Error z value Pr(>|z|)
(Intercept) 3.76812 0.06153 61.240 < 2e-16 ***
Biomass -0.10713 0.01249 -8.577 < 2e-16 ***
pHlow -0.81557 0.10284 -7.931 2.18e-15 ***
pHmid -0.33146 0.09217 -3.596 0.000323 ***
Biomass:pHlow -0.15503 0.04003 -3.873 0.000108 ***
Biomass:pHmid -0.03189 0.02308 -1.382 0.166954
...
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Ancova with Count Data

• test for the need for different slopes by comparing this
maximal model (with six parameters) with a simpler model
with different intercepts but the same slope
> m2 <- glm(Species~Biomass+pH,
+ family=poisson,data=species)
> anova(m,m2,test="Chi")
Analysis of Deviance Table

Model 1: Species ~ Biomass * pH
Model 2: Species ~ Biomass + pH
Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 84 83.201
2 86 99.242 -2 -16.04 0.0003288 ***

• AIC: m: 514.4; m2: 526.4
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Ancova with Count Data
• slopes are very significantly different p = 0.00033 , so it is

justified to retain the more complicated model
• finally, we have a look on the effects and then draw the fitted

lines through the scatterplot using the plot object p from
above

> allEffects(m,xlevels=list(Biomass=1:10))
model: Species ~ Biomass * pH
Biomass*pH effect

pH
Biomass high low mid

1 38.89998 14.737487 27.048707
2 34.94810 11.338867 23.538030
3 31.39769 8.724005 20.483007
4 28.20797 6.712158 17.824498
5 25.34229 5.164264 15.511039
6 22.76775 3.973330 13.497847
....
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Ancova with Count Data
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Proportion Data

• For comparisons of one binomial proportion with a constant,
use binom.test()

• For comparison of two samples of proportion data, use
prop.test()

• The use of GLMs on proportion data is for complex models
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GLMs & Proportion Data

• uses also logit as link function and binomial error distribution
• if there is overdispersion use quasibinomial to compensate
• fitted values are counts
• we have seen one example so far: in the challenger example

we have already used the responds variable in form of a
proportion
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GLMs & Proportion Data
• we use an example concerning sex ratios in insects as

response and
• population density as explanatory variable
• so load the data and fit the model
> numbers <-read.table("sexratio.txt",header=T)
> head(numbers)
density females males

1 1 1 0
2 4 3 1
3 10 7 3
4 22 18 4
5 55 22 33
6 121 41 80
> m <- glm(cbind(males,females)~density,
+ family=binomial,data=numbers)
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GLMs & Proportion Data
> summary(m)
Call:
glm(formula = cbind(males, females) ~ density, family = binomial,

data = numbers)

Deviance Residuals:
Min 1Q Median 3Q Max

-3.4619 -1.2760 -0.9911 0.5742 1.8795

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.0807368 0.1550376 0.521 0.603
density 0.0035101 0.0005116 6.862 6.81e-12 ***

(Dispersion parameter for binomial family taken to be 1)
Null deviance: 71.159 on 7 degrees of freedom

Residual deviance: 22.091 on 6 degrees of freedom
AIC: 54.618
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GLMs & Proportion Data

• the residual deviance is larger than the residual degrees of
freedom

• because it is something like a growth process we try a log
transformation (before using quasibinomial family)
> m <- glm(cbind(males,females)~log(density),
+ family=binomial,data=numbers)
> summary(m)
Call:
glm(formula = cbind(males, females) ~ log(density),

family = binomial, data = numbers)
Deviance Residuals:

Min 1Q Median 3Q Max
-1.9697 -0.3411 0.1499 0.4019 1.0372

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.65927 0.48758 -5.454 4.92e-08 ***
log(density) 0.69410 0.09056 7.665 1.80e-14 ***

Null deviance: 71.1593 on 7 degrees of freedom
Residual deviance: 5.6739 on 6 degrees of freedom
AIC: 38.201
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GLMs & Proportion Data

• the transformation caused a welcome decrease in the
residual deviance

• we conclude that the proportion of animals that are males
increases significantly with increasing density, and

• that the logistic model is linearized by logarithmic
transformation of the explanatory variable
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GLMs & Proportion Data

ggplot(numbers, aes(x=log(density),y=males/(males+females))) +
geom_point() +
geom_smooth(method=glm,family=binomial)
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